
Journal of Systems Architecture 77 (2017) 3–13 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Data re-allocation enabled cache locking for emb e dde d systems 

Chun Xue 

a , Keni Qiu 

a , b , ∗, Weigong Zhang 

a , b , Jing Wang 

a , b , Yuanchao Xu 

b , Mengying Zhao 

c 

a Beijing Advanced Innovation Center for Imaging Technology, Beijing, China 
b Capital Normal University, Beijing, China 
c Shan Dong University, Jinan, China 

a r t i c l e i n f o 

Article history: 

Received 6 February 2016 

Revised 5 November 2016 

Accepted 13 December 2016 

Available online 14 December 2016 

Keywords: 

Data cache locking 

Data re-allocation 

Data object similarity 

Interference graph 

a b s t r a c t 

Cache locking is a cache management technique to preclude the replacement of locked contents. Cache 

locking methods have been proposed to improve predictability and worst-case execution time (WCET) 

previously. Recently, instruction cache locking has also been applied to improve average-case execution 

time (ACET). However, we observe that the previous ACET-driven instruction cache locking technique 

shows very limited improvement on performance when applied in data cache. The underlying reason lies 

in that object similarity of data accesses in data memory blocks are relatively low. This paper presents a 

data re-allocation enabled cache locking framework where data objects are first re-allocated to enhance 

data object similarity in memory blocks and then a data cache locking is well motivated. In this way, 

locking efficiency for data cache can be enhanced and thus system performance can be improved. The 

experimental results show that the miss rate, memory access cycles and dynamic energy can obtain good 

improvements across a suite of benchmarks. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Cache is a widely used component in embedded systems to 

bridge the widening processor-memory performance gap. Cache 

locking is a technique to further improve cache efficiency which 

is supported by many modern processors, such as MIPS32 se- 

ries [1] , Intel XScale series [2] , ARM processor series [3] and 

MPC processors [4] . Cache locking is implemented by executing a 

special locking routine. It empowers a processor with the ability 

to prevent part or all of its instructions or data from being evicted 

unless it is unlocked. Once a memory block is locked in the cache, 

all the subsequent accesses to the locked contents are cache hits. 

Although locking contents in the cache avoids cache miss penalty, 

the available cache space is reduced because any locked cache re- 

source is unavailable for caching other parts of the main memory. 

Hence, a benefit-cost tradeoff should be carefully considered when 

implementing cache locking. 

Recent work has shown that instruction cache locking can 

be able to improve average execution time (ACET) of a program 

by eliminating the evictions resulting from conflict accesses [6] . 

However, the effectiveness is different in data cache locking. Data 

∗ Corresponding author at: Beijing Advanced Innovation Center for Imaging Tech- 

nology, Beijing, China. 

E-mail addresses: qiukn@cnu.edu.cn , qiukeni2015@sohu.com (K. Qiu). 

cache analysis is more complicated than instruction cache due 

to two major reasons. First, locality of a reference is harder to 

capture for data accesses. Second, single instruction may refer to 

multiple memory locations [7] . In other words, data cache has 

poorer locality than instruction cache. The prior work summa- 

rizes four different types of data reference reuses: self-temporal 

reuse, self-spatial reuse, group-temporal reuse and group-spatial 

reuse [8] . As a result, reuse analysis of data object , a key proce- 

dure in cache locking content determination, is very complicated 

for data cache. In this paper, a data object denotes a generic 

variable that holds an individual value. It is used to differen- 

tiate a single number from a vector or matrix array etc.. The 

size of a data object may be defined differently among differ- 

ent types such as integers, floats, chars, strings, Booleans and 

so on. 

In this paper, we conduct a set of experiments and observe that 

the conventional locking heuristic technique applied in instruction 

cache to improve ACET performance exhibits poor efficiency in 

data cache for most benchmarks. By analyzing the relationship 

of data cache locking and data cache properties, we have two 

interesting observations. First, object similarity of data access 

behavior in a memory block is weaker than that in an instruction 

memory block. The term object similarity means how similar data 

access behavior in a memory block exhibits in execution flows. 

Second, the one-trace based analyzing approach is not suitable 

http://dx.doi.org/10.1016/j.sysarc.2016.12.002 

1383-7621/© 2016 Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.sysarc.2016.12.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.12.002&domain=pdf
mailto:qiukn@cnu.edu.cn
mailto:qiukeni2015@sohu.com
http://dx.doi.org/10.1016/j.sysarc.2016.12.002


4 C. Xue et al. / Journal of Systems Architecture 77 (2017) 3–13 

for data cache locking because accesses to data cache are more 

sensitive to input data sets than accesses to instruction cache. We 

consider this input-sensitivity cannot be negligible. Therefore, we 

are motivated to put forward a solution in which a data layout 

is conducted beforehand to improve data object similarity inside 

memory blocks and then cache locking is determined based on 

the entire program control flow graph. In this way, a good benefit 

is expected to be exploited from data cache locking. 

This paper proposes a data re-allocation enabled data cache 

locking technique to improve ACET performance of programs based 

on global data flow analysis. The main concept is to reorganize 

data layout by placing data objects with the largest interference 

frequency into the same memory block and select the memory 

block with the highest interference risk for locking. The reduction 

of interferences leads to a reduction of possible cache miss, which 

in turn improves ACET performance. The proposed approach has 

double-fold effects. First, data re-allocation can eliminate a partial 

of potential conflict misses and meanwhile improve the similarity 

of data objects inside a memory block. Second, cache locking can 

exploit the highest efficiency in performance improvement based 

on the data re-allocation effort. The experimental results show 

that the proposed approach, data re-allocation followed by data 

cache locking, can be an effective strategy to improve system ACET 

performance. The contributions of this paper include: 

• Observations based on a set of experiments are presented that 

the conventional instruction cache locking approach has little 

effect on data cache. Furthermore, data cache locking efficiency 

is sensitive to program inputs. 

• The above observations result from the fact that data cache ex- 

hibits inherent poorer object similarity than instruction cache. 

• A data re-allocation approach is proposed to reorganize data 

objects in the memory so as to minimize the memory block 

interference frequency and improve object similarity of inside 

data memory blocks. 

• The techniques of building a data interference graph and a 

memory block interference graph are proposed to direct data 

re-allocation and data cache locking respectively to achieve 

performance improvement. 

The rest of the paper is organized as follows. The related 

work is introduced in Section 2 . The observations and discussion 

of data cache locking are illustrated in Section 3 . In Section 4 , 

a motivational example is presented and the data re-allocation 

enabled cache locking problem is addressed. Section 5 presents 

the detailed solution framework. A set of experiments is con- 

ducted to evaluate the proposed approach in Section 6 . Finally, 

Section 7 concludes the paper. 

2. Related work 

In previous work, cache locking has been studied to have 

promises in improving predictability in hard real time systems. 

As the hits and misses of the references can be counted statically 

with cache locking, the memory access cycles can be determined 

accurately, leading to tight worst-case execution time (WCET) 

analysis. Asaduzzaman et al. [9] proposed an instruction locking 

scheme of locking the blocks that cause the most misses using 

offline analysis on the Heptane platform. Liu and Xue [10] for- 

mulated the WCET optimization problem under instruction cache 

locking as an ILP instance. They proposed a recursive algorithm 

to deliver an optimal WCET. Arnaud and Puaut [11] devised a 

dynamic instruction cache locking mechanism targeting on WCET 

improvement. They proposed an algorithm which partitions the 

task into a set of regions. Each region owns statically a locked 

cache content determined offline. 

Instruction cache locking has been applied to improve average 

case execution time (ACET). Anand and Barua [12] presented a 

static instruction cache locking scheme which can be embed- 

ded inside a binary rewriter. A heuristic method based on a 

cost–benefit tradeoff model is applied to select the maximal 

net-benefit cache lines for locking by iterative simulations. Liang 

and Mitra [6] subsequently proposed an instruction cache locking 

approach by analyzing memory block reuses based on a temporal 

reuse profile. These two works both focus on a particular execution 

trace. 

Thus far, a few works target data cache locking study. Vera 

et al. [7] proposed a worst-case memory performance estimation 

approach using cache partitions and dynamic data cache locking 

in multitasking systems. Data cache locking is applied to improve 

the prediction precision of a WCET. 

Zheng and Wu [13] proposed a dynamic data cache locking 

to improve WCET. They proposed two dynamic cache locking 

approaches for a single task. The first approach formulates the 

problem as a global Integer Linear Programming (ILP) problem that 

simultaneously selects a near-optimal set of variables as the locked 

cache contents. The second one iteratively constructs a subgraph 

of the control flow graph (CFG) of the task where the lengths of all 

the paths are close to the longest path length, and uses an ILP for- 

mulation to select a near-optimal set of variables in the subgraph 

as the locked cache contents. For both of the locking approaches, 

they proposed a novel efficient data cache allocation algorithm. 

Their work differs from ours in two aspects. First, their locking 

contents selection is determined by iteratively reducing the longest 

path length since their work focuses on WCET. Second, they pro- 

posed a k-Longest-Path-based algorithm to allocate data cache with 

an objective to minimize the longest path of the interference data 

acyclic graph (DAG). Our work targets the ACET of programs under 

locking with a locking unit of a cache line. Therefore, we concern 

memory block interferences in terms of a cache set. 

Most recently, Adegbija and Gordon-Ross [14] proposed a 

phase-based cache locking to improve data cache’s performance 

and energy efficiency. In their work, a phase-based cache locking, 

which leverages an application’s varying runtime characteristics, is 

applied to data cache. 

Our work differs from that work by using static cache locking 

where the locking contents are determined before a program 

starts running. In our work, there is no overhead on locking 

content determination and locking implementation because they 

do not introduce delay at runtime. In that dynamic locking 

work [14] , a phase classification module is embedded to classify 

the applications’ phases and determine the phases’ persistence. 

The scheme requires extra hardware supports to store key flags 

and locking content locations. What is more, since the locking 

is conducted at runtime, the locking content determination and 

locking implementation will introduce additional delay. 

Actually, these two works are suitable for different kinds of 

applications. Our approach fits for small applications which have 

only one dominant execution phase in terms of data accesses. 

However, the dynamic locking method in [14] works well for large 

applications which are characteristic of multiple execution phases. 

To the best of our knowledge, our work is the first to employ 

data cache locking integrated with data re-allocation to improve 

ACET performance of applications in embedded systems. 

3. Insights to data cache locking 

In this section, we first give some preliminaries of cache lock- 

ing, and then analyze the properties of data cache locking by com- 

paring to instruction cache locking based on a set of experiments. 



Download	English	Version:

https://daneshyari.com/en/article/4956268

Download	Persian	Version:

https://daneshyari.com/article/4956268

Daneshyari.com

https://daneshyari.com/en/article/4956268
https://daneshyari.com/article/4956268
https://daneshyari.com/

