
Journal of Systems Architecture 74 (2017) 1–13 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

A resource-efficient network interface supporting low latency 

reconfiguration of virtual circuits in time-division multiplexing 

networks-on-chip 

Rasmus Bo Sørensen 

∗, Luca Pezzarossa, Martin Schoeberl, Jens Sparsø

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark 

a r t i c l e i n f o 

Article history: 

Received 4 July 2016 

Revised 21 December 2016 

Accepted 10 February 2017 

Available online 13 February 2017 

2010 MSC: 

90B18 

68M10 

Keywords: 

Network-on-chip 

Real-time systems 

Reconfiguration 

Time-division multiplexing 

a b s t r a c t 

This paper presents a resource-efficient time-division multiplexing network interface of a network-on- 

chip intended for use in a multicore platform for hard real-time systems. The network-on-chip pro- 

vides virtual circuits to move data between core-local on-chip memories. In such a platform, a change 

of the application’s operating mode may require reconfiguration of virtual circuits that are setup by the 

network-on-chip. A unique feature of our network interface is the instantaneous reconfiguration between 

different time-division multiplexing schedules, containing sets of virtual circuits, without affecting virtual 

circuits that persist across the reconfiguration. The results show that the worst-case latency from trigger- 

ing a reconfiguration until the new schedule is executing, is in the range of 300 clock cycles. Experiments 

show that new schedules can be transmitted from a single master to all slave nodes for a 16-core plat- 

form in between 500 and 3500 clock cycles. The results also show that the hardware cost for an FPGA 

implementation of our architecture is considerably smaller than other network-on-chips with similar re- 

configuration functionalities, and that the worst-case time for a reconfiguration is smaller than that seen 

in functionally equivalent architectures. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Packet-switched networks-on-chip (NoCs) have become the 

preferred paradigm for interconnecting the many cores (processors, 

hardware accelerators etc.) found in today’s complex application- 

specific multi-processor systems-on-chip [1,2] and general-purpose 

chip multi-processors [3,4] . 

In the multi-processor systems-on-chip domain, a significant 

amount of previous research has targeted the generation of 

application-specific NoC platforms e.g., [5,6] . With the growing 

cost of developing and fabricating complex VLSI chips, application- 

specific platforms are only feasible for very few ultra-high-volume 

products. In all other cases, a cost-efficient platform must sup- 

port a range of applications with related functionality. This implies 

that the hardware resources and the functionality they implement 

should be as general-purpose and generic as possible, targeting a 

complete application domain instead of a single application. This 

view is expressed in the principle provide primitives not solutions 

that is well-known and accepted in the field of computer architec- 

∗ Corresponding author. 

E-mail address: rboso@dtu.dk (R.B. Sørensen). 

ture. We adopt this view, striving to avoid hardware resources for 

dedicated and specific functionality. 

The application domain we target is real-time systems. In real- 

time systems, the whole architecture needs to be time-predictable 

to support worst-case execution time (WCET) analysis. A NoC for 

real-time systems needs to support guaranteed-service (GS) chan- 

nels. Furthermore, many hard real-time applications have multiple 

modes of operation. To support applications that change between 

operating modes, the NoC must be able to reconfigure the virtual 

circuits (VCs) at run-time. 

This paper proposes and evaluates a flexible and resource- 

efficient network interface (NI) for hard real-time systems. Our 

NoC implements VCs using static scheduling and time-division 

multiplexing (TDM). A VC provides GS channels in the form of a 

guaranteed minimum bandwidth and a maximum latency. Further- 

more, transfer of data between an on-chip memory and the NoC is 

coupled with the TDM schedule so that we can give end-to-end 

guarantees for the movement of data from one core-local memory 

to another core-local memory. This architecture avoids both physi- 

cal VC buffers in the NIs and credit-based flow control among the 

NIs that are found in most other NoC designs [7–9] . Moreover, the 

usage of TDM schedules leads to a reduced hardware complexity 

http://dx.doi.org/10.1016/j.sysarc.2017.02.001 

1383-7621/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sysarc.2017.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2017.02.001&domain=pdf
mailto:rboso@dtu.dk
http://dx.doi.org/10.1016/j.sysarc.2017.02.001


2 R.B. Sørensen et al. / Journal of Systems Architecture 74 (2017) 1–13 

due to the lack of buffering in the routers and due to a static traf- 

fic arbitration. 

The main contribution of the paper and a key feature of this NI 

is its very efficient support for mode changes. The active schedule 

can be switched from one TDM period to the next, without break- 

ing the communication flow of VCs that persist across the switch. 

This contrasts to the Æthereal family of NoCs [9,10] , which provides 

similar functionality at a higher hardware cost and longer reconfig- 

uration time. 

Our NI can store multiple TDM schedules and it supports 

instant switching from one schedule to another, synchronously 

across all NIs. The last TDM period of one schedule can be fol- 

lowed immediately by the first TDM period of a new schedule. This 

allows VCs that persist across a schedule switch to be mapped to 

different paths, without any interference to their data flow. This 

again avoids the fragmentation of resources seen in the previously 

published solutions [9,10] , in which no changes can be made to cir- 

cuits that persist across a mode change and where the set-up of a 

new circuit is limited to using free resources. 

If the schedule tables are too small to store all necessary sched- 

ules, our NoC can transparently transmit new schedules via the 

standard VCs. In this way, we avoid fixed allocation of resources 

for schedule transmission. 

The NI presented here is an extension of [11] , which is part of 

the Argo NoC [12] . A preliminary version of the new NI was pub- 

lished in [13] . In the rest of the paper, we refer to the NoC that 

uses the new NI as the Argo 2.0 NoC. The main contributions of 

this paper are: 

• support of instant reconfiguration of VCs; 

• a more elaborate analysis of the TDM schedule distribution 

through the NoC; 

• variable-length packets to reduce the packet header overhead, 

resulting in shorter schedules and/or higher bandwidth on the 

VCs; 

• interrupt packets to support multicore operating systems; 

• a more compact TDM schedule representation in the NIs, re- 

ducing the schedule memory requirements; 

• analysis of the effect on the TDM period length of using GS 

communication for reconfiguration; 

• a discussion on the scalability of the architecture. 

This paper is organized into seven sections. Section 2 presents 

related work. Section 3 provides background on mode changes, 

TDM scheduling, and the Argo NoC. Section 4 presents the Argo 2.0 

architecture in detail. Section 5 describes the reconfiguration 

method and its utilization. Section 6 evaluates the presented ar- 

chitecture. Section 7 concludes the paper. 

2. Related work 

This section presents a selection of NoCs that offer GS connec- 

tions and that support run-time reconfiguration of the GS pro- 

vided. One approach to implementing GS connections is to use 

non-blocking routers in combination with mechanisms that con- 

strain packet injection rates. These NoCs are reconfigured by reset- 

ting the parameters that regulate the packet injection rates to the 

new requirements. 

Mango [14] uses non-blocking routers and rate-control, but only 

links are shared between VCs. Each end-to-end connection is allo- 

cated to a unique buffer in the output port of every router that 

the connection traverses and these buffers use credit-based flow 

control between them. The bandwidth and latency of the differ- 

ent connections are configured by setting priorities in the output 

port arbiters of the router and by bounding the injection rate at 

the source NI. Connections are set up and torn down by program- 

ming the crossbar switches, which is done using best effort (BE) 

traffic. In Mango, we can observe that the reconfiguration directly 

interacts with the rate control mechanism in the NIs, the crossbars, 

and the arbiters in the routers. In addition, the fact that GS con- 

nections are programmed using BE packets may compromise the 

time-predictability of performing a reconfiguration. 

The NoC used in the Kalray MPPA-256 processor [15] uses flow 

regulation, output-buffered routers with round-robin arbitration, 

and no flow control. Network calculus [16] is used to determine 

the flow regulation parameters that constrain the packet injection 

rates such that buffer overflows are avoided and GS requirements 

are fulfilled. The Kalray NoC is configured by initializing the rout- 

ing tables and injection rate limits in the NIs. 

IDAMC [17] is a source-routed NoC using credit-based flow 

control and virtual channel input buffers together to provide GS. 

IDAMC provides GS connections by implementing the back suction 

scheme [18] , which prioritizes non-critical traffic while the critical 

traffic progresses to meet the deadline. 

To our knowledge, details on how reconfiguration is handled 

in Kalray, Mango and IDAMC have not been published. However, 

we can safely assume that setting up a new connection must in- 

volve the initialization and modification of flow regulation parame- 

ters, and tearing down a connection must involve draining in-flight 

packets from the VC buffers in the NoC. 

An alternative to the usage of non-blocking routers in combi- 

nation with constrained packet injection rates is VC switching im- 

plemented using static scheduling and TDM. These NoCs can be 

reconfigured by modifying the schedule and routing tables in the 

NIs and/or in the routers. 

The Æthereal family of NoCs [9,10] uses TDM and static schedul- 

ing to provide GS. The original Æthereal NoC [19] supports both GS 

and BE traffic. The scheduling tables are in the NIs and the routing 

tables are in the routers. Reconfiguration is performed by writing 

into these tables using BE traffic. Analogously to the Mango NoC 

approach, using BE traffic may compromise the time-predictability 

of a (re)configuration. The dAElite NoC [9] focuses on multicast and 

overcomes this problem by introducing a separate dedicated NoC 

with a tree topology for the distribution of the schedule and rout- 

ing information during run-time reconfiguration. 

The aelite NoC [10] only supports GS traffic and it is based on 

source routing. This reduces significantly the high hardware cost 

of distributed routing and combined support for BE and GS traffic 

of the original Æthereal NoC. For this NoC, the routers are sim- 

ple pipelined switches and both schedule tables and routing tables 

are in the NIs. Reconfiguration involves sending messages across 

the NoC using GS connections from a reconfiguration master to the 

schedule and routing tables that are required to change; these GS 

connections are reserved for this purpose only. 

The original version of the Argo NoC [12] has some functional 

similarity with aelite. It only supports GS traffic and it also uses a 

TDM router with source routing. The Argo design avoids VC buffers 

and the credit-based flow control that account for most of the area 

of the NIs of the Æthereal, aelite, and dAElite range of NoCs. The 

Argo NoC uses a more efficient NI [11] in which the direct memory 

access (DMA) controllers are integrated with the TDM scheduling. 

The original version of the Argo NoC does not support reconfigura- 

tion. 

In all the presented NoCs that uses VC switching and TDM static 

scheduling, the re-mapping of VCs that persist across the reconfig- 

uration is not supported, since the reconfiguration is done incre- 

mentally (tearing down unused circuit and setting up new ones). 

This can lead to sub-optimal usage of resources due to fragmenta- 

tion. If re-mapping of VCs is needed, the entire application must 

be suspended during the reconfiguration. 

This paper presents a new version of the Argo architecture that 

implements the same functionality as the first version of Argo, 



Download English Version:

https://daneshyari.com/en/article/4956276

Download Persian Version:

https://daneshyari.com/article/4956276

Daneshyari.com

https://daneshyari.com/en/article/4956276
https://daneshyari.com/article/4956276
https://daneshyari.com

