
ARTICLE IN PRESS

JID: SYSARC [m5G; December 6, 2016;16:35]

Journal of Systems Architecture 0 0 0 (2016) 1–16

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Reservation based protocol for resolving priority inversions in

composable conveyor systems

Abdelrhman Mahamadi ∗, Mukesh Chippa , Shivakumar Sastry

Complex Engineered System Lab, ECE Department at the University of Akron, Ohio, USA

a r t i c l e i n f o

Article history:

Received 10 April 2016

Revised 3 September 2016

Accepted 21 November 2016

Available online xxx

Keywords:

Priority inversion

Networked embedded systems

Advanced manufacturing

a b s t r a c t

We present a reservation based protocol for resolving priority inversions in Composable Conveyor Sys-

tems. These systems represent a class of networked multi-processor systems that are used to physically

transport entities from inputs to outputs. The absence of shared memory and the interaction between the

cyber and physical subsystems present many challenges such as priority inversion. We view the end-to-

end transport of an entity as a task and discuss how these systems admit a rich set of task models. Like

in other real-time systems, a priority inversion is said to occur when a high-priority task is blocked by

a lower-priority task for an unbounded duration of time. We present an approach to compute the aver-

age waiting time for entities, establish properties of the proposed protocol and present simulation results

that demonstrate the efficacy of the proposed protocol. In the future, this protocol can be extended to

other task models and a larger class of decentralized systems for advanced manufacturing.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in computing and communication technologies

offer new platforms for the control and regulation of manufactur-

ing systems [1,4] . Despite the rapid adoption of early digital com-

munications and distributed systems technologies into automation

and manufacturing systems, concerns such as the large installed

base, cost and safety have created an inertia for change [31] . Over

the last few years, wireless communications technologies [13] and

new decentralized platforms for regulating automation systems

have been explored [4] . The integration of fine-grained cyber capa-

bilities at multiple levels of traditional automation systems offers

new advantages such as flexible reconfiguration to address emerg-

ing market demands, energy efficiency, and scalable performance.

This decentralized, reconfigurable architecture when coupled with

the tight integration between cyber and physical activities exposes

several fundamental issues that must be revisited and addressed to

ensure safe and robust operational environments.

Composable Conveyor Systems (CCS) are well-structured sys-

tems that represent a class of networked embedded systems [28] .

These systems are asynchronous, decentralized, systems that do

not have shared memory. The nodes can interact over wireless

links and by adjusting the transmission power in each node, one

can achieve spatial separation between subsets of the nodes. In or-

∗ Corresponding author.

E-mail address: abodi6767@hotmail.com (A. Mahamadi).

der to synchronize state or time, the nodes can execute multihop

protocols over the wireless links. CCS can also be viewed as a net-

worked system that moves physical entities from inputs to outputs.

In this view, the interactions between the nodes occur at multi-

ple time scales – for example, the physical movement of entities

requires several seconds whereas the communications require sev-

eral milliseconds; the topology of the system may be reconfigured

once in a few hours whereas faults may occur once in a few days.

The main objective of CCS is to transport physical entities from in-

puts to outputs. The physical entities present several constraints

- for example, once a sequence of entities are on the conveyor

units, they cannot be rearranged. These systems are attractive be-

cause they capture many of the spatio-temporal interactions that

occur in a variety of material handling applications; at the same

time, CCS units have simple behaviors that are pre-programmed.

The topology is flexible and the system can be composed or re-

configured in response to demand.

Each unit is regulated by an autonomous microcontroller that

interacts with its neighboring units over low-power wireless links.

These conveyor systems are composed using two kinds of units

called Segments and Turns . These systems can be dynamically re-

configured to assure real-time Quality of Service (QoS), i.e., end-

to-end latency, jitter and throughput , in operational theaters such as

warehouses, manufacturing lines, package sorting facilities, or front

line logistics for future military deployments. Tasks in CCS, which

involve the end-to-end transport of an entity in the system, evolve

simultaneously both in time and space. The insights gained from

http://dx.doi.org/10.1016/j.sysarc.2016.11.008

1383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: A. Mahamadi et al., Reservation based protocol for resolving priority inversions in composable conveyor sys-

tems, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.008

http://dx.doi.org/10.1016/j.sysarc.2016.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:abodi6767@hotmail.com
http://dx.doi.org/10.1016/j.sysarc.2016.11.008
http://dx.doi.org/10.1016/j.sysarc.2016.11.008

2 A. Mahamadi et al. / Journal of Systems Architecture 0 0 0 (2016) 1–16

ARTICLE IN PRESS

JID: SYSARC [m5G; December 6, 2016;16:35]

such a study can be applied to a larger class of cyber-physical sys-

tems [3,28] .

The notion of priority arises in CCS because of externally im-

posed deadline requirements. For example, in a package sorting

application, packages may have service requirements such as “next

morning delivery”, “two-day delivery” or “ground delivery” [28] .

Entities with such requirements enter the CCS from some inputs

and must be moved to some output along paths, i.e., a sequence of

physically adjacent conveying units. To improve connectivity, uti-

lization, and resilience of the CCS, the topology is designed to en-

sure that such paths overlap. One consequence of such overlaps is

that when two paths merge at a unit, lower-priority entities that

are moving along one path can block higher-priority entities on

other intersecting paths.

As is well-known in the real-time systems literature, lower-

priority tasks may in fact be serviced before higher-priority tasks

for a bounded duration of time whenever there is a need to share

common resources. However, lower-priority tasks must not be able

to block higher-priority tasks for an unbounded duration of time .

This is the classical priority inversion problem [29] ; in central-

ized, real-time systems, this problem has been solved using classi-

cal protocols such as the Priority Inheritance Protocol (PIP). Certain

problems that remained unresolved when using PIP were solved

using the Priority Ceiling Protocol (PCP) and the Stack Resource

Protocol (SRP) [10] . When priority inversions occur in CCS, it fun-

damentally affects how the entities with specific priorities are han-

dled by the system. A higher-priority entities might suffer un-

bounded delays as we will demonstrate in Section 3 . When the

CCS topology and the arrival distribution of the entities are known

in advance, it may be possible to schedule the activities carefully

to minimize priority inversions. However, when the topology can

change dynamically and/or the arrival distributions are not known

in advance, we need dynamic online protocols to avoid and mit-

igate the effects of priority inversions. Since the units of CCS are

modular and autonomous, such a protocol must be decentralized,

adaptable and scalable.

In our prior work [28] , we presented how priority inversions

manifest in CCS. The end-to-end transfer of an entity through the

CCS was viewed as a task and we showed that when all the en-

tities that enter the CCS via the same input have the same prior-

ity, PIP could be effectively adapted to resolve priority inversions.

We also presented simulation results to demonstrate the impact of

priority inversions and established the need for new protocols to

fully resolve priority inversions in CCS. In this paper, we extend

this prior work along several dimensions. We show that when en-

tities with different priorities enter the CCS from the same Input,

the priorities of all entities waiting to be serviced at a turn can

become elevated to the highest priority among the entities that

have been admitted to the CCS, when PIP is used. Further, as is

already well-known for centralized real-time systems, we shown

that when PIP is used in CCS, both deadlocks and chained blocking

occur. However, the classical solutions for addressing these issues

in centralized systems – PCP and SRP, cannot be used in CCS. This

is because the ceiling priorities that are computed in both these

protocols cause the priorities of all the entities in the CCS to be

elevated to the highest priority. Thus, to effectively resolve prior-

ity inversions in CCS, we propose a new Reservation Based Proto-

col (RBP) that does not saturate the priorities of the entities and

avoids both deadlocks and chained blocking. Finally, we present an

approach to compute the average end-to-end waiting time (AEWT)

for entities in the CCS in when using RBP. The new simulation re-

sults demonstrate the efficacy of RBP and the validity of AEWT.

The remainder of this paper is organized as follows. After re-

viewing the background and related work in resolving priority

inversions in Section 2 , we describe the CCS precisely and dis-

cuss two task models in Section 3 . In Section 4 we describe the

classical resource sharing protocols, their adaptations to CCS, and

present the new reservation based protocol in Section 5.3 . We an-

alyze these protocols and determine the average expected waiting

time for entities from a particular input with a given priority in

Section 6 . We present simulation results in Section 7 and our con-

clusions in Section 8 .

2. Related work

The priority inversion problem has been studied extensively in

areas such as real-time systems, multiprocessor systems and mate-

rial handling systems.

2.1. Priority inversion in real-time systems

Classical protocols for resolving priority inversions are the Pri-

ority Inheritance Protocol (PIP), the Priority Ceiling Protocol (PCP)

[29] and the Stack Resource Protocol (SRP) [6] . In PIP, priority in-

versions are resolved by temporarily elevating the priorities of the

tasks that hold a resource by inheriting the (higher) priority of a

task that is requesting access to the same resource. In PCP and

SRP, the highest ceiling among all possible tasks that can use a

resource is used to determine whether or not to accept a task into

the system; once accepted, a task is guaranteed to complete exe-

cution with no further blocks. These protocols were designed for

centralized real-time systems.

Priority inversions in a multistage packet switching network

were resolved using PIP [33] . This network was used to route mes-

sage packets from N inputs to N outputs along fixed paths that

each contain log 2 (N) routers. Each router had two in-ports, two

out-ports, and capacity to hold a single packet. Before sending

packets, each router that had a packet sent a request to transfer

the packet to the next router along its path. Every router accepted

only the highest priority packet from its in-ports. The restricted

topology of the network limits the applicability of this technique

in CCS. Flow control techniques [11] are not directly applicable be-

cause the routes over which entities move are not always known in

advance and there are no buffers in the CCS to store and forward

entities.

A reservation based approach was proposed to resolve priority

inversions in a centralized real-time system with shared resources

[5] . Here, a task requested a reservation and waited for the re-

source to be granted before using the resource. This mechanism

involved two messages: (hold j r (t)) and (next j r (t)). The hold mes-

sage indicated the time for which the resource would be held after

gaining access and the next message indicated the minimum time

before the resource would be requested next. They proposed two

reservation policies: first, a requesting task was granted access to

resource r if r (t) was less than or equal to the start of the next

reservation, i.e., next k r (t), of all higher-priority tasks; in the second

policy, a request was granted only when hold j r (t) was less than or

equal to the next reservation for all higher-priority tasks, for any

resource (i.e., not just r) in the system. In order to adopt these

protocols for CCS, it is necessary to accurately estimate the time

at which an entity will arrive at a downstream turn along its path.

Such an estimate is difficult because the priorities of the entities

arriving at all other inputs are not known; further, statistical meth-

ods used to estimate future times must be updated when there is

a change in the topology of the CCS.

Another resource reservation protocol that shared resources

over the Internet was proposed in [36] . Here, the sender started

by sending a discovery message to the receiver. The receiver

sent reservation requests to all the switches in that route with

a specified bandwidth. If the reservations were confirmed by the

switches, the route was confirmed to the sender and remained

active until the sender terminated the reservation. This idea of

Please cite this article as: A. Mahamadi et al., Reservation based protocol for resolving priority inversions in composable conveyor sys-

tems, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.008

http://dx.doi.org/10.1016/j.sysarc.2016.11.008

Download	English	Version:

https://daneshyari.com/en/article/4956277

Download	Persian	Version:

https://daneshyari.com/article/4956277

Daneshyari.com

https://daneshyari.com/en/article/4956277
https://daneshyari.com/article/4956277
https://daneshyari.com/

