
ARTICLE IN PRESS

JID: SYSARC [m5G; January 12, 2017;15:0]

Journal of Systems Architecture 0 0 0 (2017) 1–15

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Energy-efficient scheduling for moldable real-time tasks on

heterogeneous computing platforms

Houssam-Eddine Zahaf a , b , ∗, Abou El Hassen Benyamina

b , Richard Olejnik

a ,
Giuseppe Lipari a

a Université Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille, F-590 0 0 Lille, France
b Oran1 University, Ahmed BenBella, Algeria

a r t i c l e i n f o

Article history:

Received 26 April 2016

Revised 25 November 2016

Accepted 6 January 2017

Available online xxx

Keywords:

Moldable tasks

Real-time

DVFS

DPM

Energy consumption

Partitioned scheduling

Frequency selection

Task allocation

INLP

a b s t r a c t

In this paper, we address the problem of executing (soft) real-time data processing applications on het-

erogeneous computing platforms with the goal of reducing the energy consumption. The typical appli-

cation domain is edge computing (or fog computing), where a certain amount of data, collected from the

environment, needs to be pre-processed in real-time before being sent to the central server for storage

and final processing. The kind of applications we address here can be easily parallelized, and we also

need to reduce as much as possible the necessary energy to perform such tasks. Heterogeneous Multi-

core Processors (HMP) such as ARM big.LITTLE are designed to combine both performances and energy

efficiency, so they are one of the preferred choices for this kind of applications. Here we focus on Dy-

namic Voltage and Frequency Scaling (DVFS), parallelization, real-time scheduling and resource allocation

techniques. In the first part of the paper, we present a model of the performance and energy consumption

of a parallel real-time task executed on an ARM bigLITTLE architecture. We use this model in the second

part of the paper where we first define the optimization problem as an Integer Non-linear Programming

(INLP) problem, and then propose heuristics for efficiently solving it. Finally, we present a wide range of

synthetic experiments that demonstrate the performance of our approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Energy consumption is an increasing concern in cyber-physical

real-time systems, especially when processing elements operate on

battery power. Embedded real-time distributed systems must sup-

port increasingly complex applications such as distributed video

surveillance, processing a large amount of sensor data, etc.

To reduce the network traffic, instead of collecting and send-

ing all data to a remote central server, part of the processing is

done on-site with multicore embedded computing boards, so that

only a small part of pre-processed data needs to be sent. For ex-

ample, a surveillance system analyses the full video frames on-site

by extracting the important features, and sends only the features

for further processing at the central site. This model of compu-

tation is now known as “Fog-computing” [1] (also called “Edge-

computing”).

∗ Corresponding author.

E-mail addresses: houssam-eddine.zahaf@univ-lille1.fr (H.-E. Zahaf),

benyamina.abouelhassen@univ-oran1.dz (A.E.H. Benyamina), Richard.olejnik@univ-

lille1.fr (R. Olejnik), Giuseppe.lipari@univ-lille1.fr (G. Lipari).

Many of these applications can be easily parallelized by dis-

tributing data across the parallel computing elements. Reducing

energy consumption in these systems is a very serious problem

when they are operated by batteries. However, even when they

are connected to the electric grid, we need to keep the consump-

tion as low as possible. Heterogeneous multicore technology can

help us in achieving timeliness and low energy consumption: in

fact, even when the computational load is not very high, multicore

processors are more energy efficient than an equivalent single-core

platform [2] . The idea is to operate the system at a “lower fre-

quency”, set some cores into a deep power state and, at the same

time, reduce task’s response time by decomposing a sporadic task

into parallel threads to be partitioned across the active cores.

Task decomposition is a well-known problem in the parallel

programming community. For example, OpenMP [3] is an API spec-

ification for parallel programming. The sections of code that are

meant to run in parallel are marked with pre-compiler direc-

tives. One example of such a directive is pragma parallel for . In

the OpenMP parallel model, a parallel for loop preceded by the

STATIC schedule clause is implemented by distributing the N it-

erations on p threads into approximately N
p iterations per each

thread (if no further specification is provided). After the execution

http://dx.doi.org/10.1016/j.sysarc.2017.01.002

1383-7621/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: H.-E. Zahaf et al., Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing plat-

forms, Journal of Systems Architecture (2017), http://dx.doi.org/10.1016/j.sysarc.2017.01.002

http://dx.doi.org/10.1016/j.sysarc.2017.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:houssam-eddine.zahaf@univ-lille1.fr
mailto:benyamina.abouelhassen@univ-oran1.dz
mailto:Richard.olejnik@univ-lille1.fr
mailto:Giuseppe.lipari@univ-lille1.fr
http://dx.doi.org/10.1016/j.sysarc.2017.01.002
http://dx.doi.org/10.1016/j.sysarc.2017.01.002

2 H.-E. Zahaf et al. / Journal of Systems Architecture 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; January 12, 2017;15:0]

of the parallel code, the threads join back into the master thread,

which continues onward to the end of the program. However, this

task decomposition does not take into account scheduling, the re-

spect of the real-time and energy constraints.

Parallel real-time task models are classified according to the

way the level of parallelism is specified and to the moment of this

specification. We can distinguish three types of models:

• rigid : the number of processors assigned to a task is specified

independently before the scheduling analysis and does never

change;

• moldable : the number of processors assigned to a task is spec-

ified off-line using an off-line analysis algorithm , for example

during pre-processing or compilation;

• malleable : similar to moldable, but the number of processors

assigned to a task may dynamically change during execution.

According to [4,5] , most parallel applications in the real world

are moldable. In this work we focus on moldable real-time tasks.

In order to achieve an optimal decomposition with respect to

the energy consumption for a set of tasks on heterogeneous multi-

core platform, we need to (i) set the operating frequency of cores;

(ii) decompose each task into a set of parallel threads (if possi-

ble/desirable); (iii) perform a schedulability analysis and allocate

the threads onto the cores to guarantee that each thread completes

before its deadline.

Organization. This paper is structured as follows. In Section 2 ,

we present the related work. In Section 3 , we propose a model

of a heterogeneous architecture, and a benchmarking technique for

measuring the computation time and the energy consumed by a

task when executed on processor(s) with a certain operating fre-

quency. Using our technique, we obtain a mathematical model of

the energy and performance profile of a task.

Then, in Section 3.3 we propose a new task model for parallel

tasks. In our task model, a task is a collection of alternative cut-

points , and each cut-point is a set of parallel threads. A cut-point

represent a possible implementation of the task into a set of par-

allel threads.

We proceed by formalizing the problem of scheduling and al-

location as an Integer Non-Linear Programming (INLP) problem in

Section 4.1 and we confirm that the problem complexity explodes

even for medium-sized task sets. We then propose a scheduling

heuristics in Section 4.2 and we show, by performing a wide set of

experiments in Section 5 , that our heuristic performs better than

existing heuristics.

2. Related work

In the real-time systems literature, many papers [6–10] focus on

static and dynamic voltage and frequency scaling for uni-processor

architectures, and some researchers proposed similar techniques

for homogeneous multiprocessor architectures. Some recent works

[11–14] focus on heterogeneous multi-core architectures.

Bini et al. [6] proposed a semi-linear model for modelling the

worst-case execution time of a task as a function of the frequency,

which we reuse in our own task model (see Section 3.3). They

also proposed an algorithm to set the minimum processor speed

on single processor architectures, so that all the deadlines are re-

spected. Concerning real-time parallel task scheduling on multi-

processors, many works (e.g. [15–21]) focused on intra-task paral-

lelism, without considering energy consumption.

Kato et al. [17] adapted the gang task model to a gang real-time

task model. In this model a task is defined by the number of pro-

cessors used simultaneously, its execution time, period, and con-

strained deadline. All threads of a parallel section in a gang model

have to be run in parallel and at the same time they must start

and end the execution on their processors simultaneously. In con-

trast to classic global EDF, in gang EDF a high priority task at time

t may not be run at that time if the number of available proces-

sors is less than the number of the parallel threads of this task.

This model is difficult to implement, because the scheduler needs

to synchronize the execution of the threads among different pro-

cessors including possible preemptions.

A different model, easier to implement, is the multi-thread

model, where parallel threads are scheduled independently, and

in this work we will adopt it. Lakshmanan et al. [15] proposed a

fork-join model for representing parallel tasks: each task is a se-

quence of alternating parallel and sequential segments . Saifullah

et al. [21] proposed a parallel task model where a task is composed

of segments, and each segments consists of a set parallel threads

with the same real-time characteristics (e.g. release time, execution

time, deadline). At the end of each segment, parallel threads must

synchronise. They also proposed a general method to express all

models proposed in [15,16] . They use global EDF and partitioned

DM for scheduling. They assume that their work can be used on

uniform processors with different speeds, and that the thread ex-

ecution time scales inversely on speed. However, they ignore the

memory effect on execution time variation. Courbin and Goossens

[16] proposed a less restrictive model where parallel sub-tasks of

each phase 1 have the same real-time characteristics except for the

execution time. They state that the model proposed in [21] is a

specific case of their model. They also proposed an algorithm to

assign real-time parameters to a fork-join model in order to ex-

press it in their model, called Multi-phase Multi-Thread .

Jing Li et al. [22] proposed a federated scheduling approach

for parallel real-time task scheduling. They considered a general

task model (directed acyclic graph DAG to express the data de-

pendency) with implicit deadlines. The federated scheduling algo-

rithm proposes to divide tasks into two disjoint sets, the high-

utilisation tasks (u ≥ 1) and the low-utilisation tasks (u < 1).

The low-utilisation tasks are run in competition with each other

on shared cores using well-know multiprocessor scheduling algo-

rithms. The high-utilisation tasks are run each on a dedicated core.

However, this is not always the optimal choice when the goal is to

optimize the energy consumption.

All these works [15,16,21,22] only address the scheduling prob-

lem of parallel task, without considering the energy consumption

and assume a fixed decomposition of a task to a set of parallel

threads. However, parallel threads size may be adjusted. For exam-

ple, a parallel for loop with 100 iteration may be decomposed into

two threads with each 50 iteration, or the first with 80 iteration

and the second 20 iteration or any other decomposition that en-

sures that the sum of iterations is 100. This may allow more flex-

ibility in scheduling. Our task model allows specifying numerous

alternative parallel decompositions without any particular restric-

tion.

Paolillo et al. [23] defined the optimal frequency for minimizing

energy consumption on homogeneous platforms with gang mal-

leable tasks. They target homogeneous processor platforms with

the ability of turning off some processors. They considered spo-

radic implicit deadline tasks and used the canonical parallel sched-

uler proposed in [20] , which is an optimal scheduling algorithm for

sporadic tasks on homogeneous multiprocessor platforms.

Colin et al. in [14] proposed a partitioned-EDF heuristic to allo-

cate implicit deadline tasks on Single-ISA heterogeneous multicore

architecture, such as the ARM big.LITTLE architecture, with the goal

of minimizing the energy consumption. They present several ex-

periments on Exynos 5410,5420,5422 ARM big.LITTLE processors.

Our model of the architecture is similar to their model. However,

1 A phase is equivalent to a segment .

Please cite this article as: H.-E. Zahaf et al., Energy-efficient scheduling for moldable real-time tasks on heterogeneous computing plat-

forms, Journal of Systems Architecture (2017), http://dx.doi.org/10.1016/j.sysarc.2017.01.002

http://dx.doi.org/10.1016/j.sysarc.2017.01.002

Download English Version:

https://daneshyari.com/en/article/4956279

Download Persian Version:

https://daneshyari.com/article/4956279

Daneshyari.com

https://daneshyari.com/en/article/4956279
https://daneshyari.com/article/4956279
https://daneshyari.com

