
Journal of Systems Architecture 72 (2017) 80–92 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Fine grained, direct access file system support for storage class 

memory 

Yi Wang 

a , b , Tianzheng Wang 

c , Duo Liu 

d , Zili Shao 

f , ∗, Jingling Xue 

e 

a Beijing Advanced Innovation Center for Imaging Technology, China 
b College of Computer Science and Software Engineering, Shenzhen University, China 
c Department of Computer Science, University of Toronto, Canada 
d College of Computer Science, Chongqing University, China 
e School of Computer Science and Engineering, University of New South Wales, Sydney, Australia 
f Embedded Systems and CPS Laboratory, Department of Computing, The Hong Kong Polytechnic University, Hong Kong 

a r t i c l e i n f o 

Article history: 

Received 14 January 2016 

Revised 24 May 2016 

Accepted 18 July 2016 

Available online 19 July 2016 

Keywords: 

Storage class memory 

Memory management 

Block device support 

Phase change memory 

Byte-addressable direct I/O, 

a b s t r a c t 

New storage class memory (SCM) technologies, such as phase change memory (PCM) and memristors, are 

not only byte-addressable like DRAM but also non-volatile like traditional hard disk drives. SCM modules 

can be placed side-by-side with DRAM on the memory bus, available to memory instructions issued by 

the CPU. This shift thus engenders a new “DRAM-SCM” storage architecture, which promises near-DRAM 

secondary storage access speed at several orders of magnitude faster than magnetic disk or flash memory. 

Utilizing SCM as a secondary storage device will have a profound impact on memory hierarchy design, 

requiring new architectural and operating system support. 

In this paper, we adopt PCM in the DRAM-SCM storage architecture and present BSS to provide file 

system-independent B lock device S upport for S torage class memory. To ensure backward compatibility 

and high performance, BSS provides a block device interface found in traditional hard disk drives and 

allows existing file systems to be built on top of itself without any modifications. BSS is designed to di- 

rectly access the PCM through memory instructions and bypass traditional disk caches that are intended 

to reduce seek time. 

The DRAM-SCM architecture and BSS are prototyped in QEMU and the Linux kernel, respectively. Vali- 

dation using benchmarks reveals that both work together well to exploit significant advantages of SCM. 

Compared to traditional hard disk drives, our approach boosts the write/read performance by up to 204x 

for large files and achieves comparable performance for small ones. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Storage systems have long been a major I/O bottleneck in mod- 

ern computer systems. To eliminate this bottleneck, solid-state, 

non-volatile memory technologies, have been proposed to replace 

traditional hard disk drives. Storage class memory (SCM) represents 

a new class of data storage and memory devices, which blur the 

distinction between memory and storage. 

Despite its promising benefits (e.g., low power consumption, 

non-volatility and high density), SCM still suffers from the lack 

of a unified storage architecture to fully realize its potentials. As 

existing operating systems are designed to cater for the tradi- 

tional DRAM-hard disk architecture with a strict distinction be- 

∗ Corresponding author. 

E-mail address: cszlshao@comp.polyu.edu.hk (Z. Shao). 

tween memory and storage, considerable efforts on architectural 

and operating system support are required to facilitate smooth ac- 

cess to SCM as secondary storage. 

In this paper, we present BSS to provide file system- 

independent B lock device S upport for S torage class memory. BSS 

provides a block device interface to the file system and bypasses 

the existing page cache to achieve direct I/O accesses to SCM, with 

the resulting advantage that no changes are required to be made 

to the file system or the hardware implementation of SCM. Conse- 

quently, existing file systems can be used on top of BSS directly 

without any modifications. File system users can continue to enjoy 

advanced file system features, such as scalability and performance 

enhancements for large files, without actually noticing that the un- 

derlying storage medium is SCM rather than hard disk drives. 

This paper offers both architectural and operating system sup- 

port for SCM. For architectural support, we propose a design of 

http://dx.doi.org/10.1016/j.sysarc.2016.07.003 

1383-7621/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sysarc.2016.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.07.003&domain=pdf
mailto:cszlshao@comp.polyu.edu.hk
http://dx.doi.org/10.1016/j.sysarc.2016.07.003


Y. Wang et al. / Journal of Systems Architecture 72 (2017) 80–92 81 

the DRAM-SCM storage architecture and adopt phase change mem- 

ory (PCM) in this DRAM-SCM architecture. In our architecture, both 

DRAM and PCM are attached to the memory bus directly through 

the DDR interface. DRAM is used as primary storage while PCM 

is intended for secondary storage. The design of memory manage- 

ment unit (MMU) is done so that the memory partitions, which 

represent memory regions covered by DRAM and PCM modules, 

can be reported to the operating system. 

With the DRAM-SCM architecture, SCM can be accessed 

through traditional memory instructions. For secondary storage, 

the access of physical space is based on the sector. The sector 

is fixed in the secondary storage device, and it does not require 

further address mappings. Then the process of virtual-to-physical 

memory address translation for the access to SCM becomes redun- 

dant. Therefore, we propose a hybrid CPU mode to facilitate data 

access to SCM. In the proposed hybrid mode, the addresses for 

DRAM are still interpreted as virtual ones using the virtual mode. 

The access to SCM will be conducted through new memory in- 

structions. The SCM addresses are interpreted as physical addresses 

in MMU. This will prevent the unnecessary address translations in 

SCM. 

In addition to the aforementioned architectural support, we 

have also provided operating system support to SCM. In order to 

utilize SCM as a secondary storage device, one possible solution 

would be to design a new file system specifically for SCM. How- 

ever, a new file system requires a tremendous amount of design 

efforts and will only become mature after a long period of time. As 

a result, our solution is different. BSS maintains backward compat- 

ibility by providing a block device interface usually implemented 

by traditional hard disk drives for file systems. In addition, BSS di- 

rectly utilizes the new instructions for data transfer and bypasses 

the traditional disk cache to achieve fast direct I/O access to SCM. 

This paper makes the following contributions: 

• We propose a file system-independent block device interface 

for SCM, which provides backward compatibility and transpar- 

ently supports the integration of SCM in current computer sys- 

tems. 
• We bypass traditional disk caches to allow fast direct I/O access 

to SCM, so that secondary storage can be accessed identically 

as main memory. 
• We propose a new hybrid CPU mode for the DRAM-SCM archi- 

tecture and introduce two new privileged instructions to pro- 

vide fine-grained, physical access to SCM. 

We have implemented the DRAM-SCM architecture on top of 

QEMU [1] , a full-system emulator, by adding new memory regions, 

maps, and instructions for PCM. The new memory map that con- 

tains both DRAM and PCM regions will be reported to the oper- 

ating system by the BIOS. In addition, we have also built a proto- 

type of BSS in the Linux kernel. In our experimental validation and 

benchmarking, we strive to demonstrate both the performance ad- 

vantages and feasibility of the DRAM-SCM architecture and BSS. To 

the best of our knowledge, this is the first work to provide a com- 

prehensive working design and prototype for SCM as secondary 

storage, with both architectural and operating system support. 

The rest of this paper is organized as follows. We first present 

an overview of storage class memory in Section 2 . We discuss 

the related work in Section 3 . The designs of the DRAM-SCM ar- 

chitecture and BSS are presented in Sections 4 and 5 , respec- 

tively. Section 6 introduces our implementation details. We evalu- 

ate BSS on top of the DRAM-SCM architecture in Section 7 . Finally, 

Section 8 concludes this paper and discusses future work. 

Table 1 

Comparing DRAM, NAND flash and PCM. 

Attributes DRAM PCM NAND 

Non-Volatile No Yes Yes 

Erase Required Bit Bit Block 

Software Simple Simple Complex 

Power ∼W/GB 10 0 → 50 0mW/die ∼100mW/die 

Write Latency ∼20-50ns ∼2-3 μs ∼100 μs 

Write Energy ∼0 .1nJ/b < 1nJ/b 0.1-1nJ/b 

Read Latency 50ns 50-100ns 10-25 μs 

Read Energy ∼0 .1nJ/b �1nJ/b �1nJ/b 

Idle Power ∼W/GB �0 .1W �0 .1W 

Endurance ∞ 10 8 10 5 → 10 4 

Data Retention ms Not f (cycles) f (cycles) 

2. Background 

The term storage class memory refers to a type of storage tech- 

nology that is non-volatile and spacious like traditional hard disk 

drives but with performance and interfaces similar to those of 

main memory. It is a type of solid-state, resistive storage medium 

that blurs the boundaries between storage and memory by being 

low-cost, fast, and non-volatile [2] . 

Resistive memories, such as phase-change memory (PCM) [3–

5] , Ferroelectric RAM (FeRAM) [6] , spin-transfer torque RAM (STT- 

RAM) [7–12] , and memristors [13,14] , use atomic arrangements to 

set the resistance of memory cells to store information [15] . Un- 

like DRAM and flash memory, resistive memories store data by us- 

ing resistivity instead of electrical charge. Resistive memories are 

typically byte-addressable, non-volatile, and have better scalability 

compared to flash memory. Although resistive memories are cur- 

rently only available in small capacity, the scaling trends predict 

that larger and cheaper resistive memories will quickly become 

available in the near future. The emerging three-dimensional archi- 

tecture also boost the adoption of resistive memories [16,17] . They 

will replace most of semiconductor memories in current computer 

systems. Therefore, resistive memories are promising candidates to 

implement SCM. 

Among these resistive memories, PCM is one of the promising 

candidates to replace hard disk drives and closest to high-density 

commercial deployment. PCM cells can be organized into an array 

structure like that of DRAM [18] . Thus, it is possible to manufacture 

PCM modules that operate in the same way as exiting DRAM mod- 

ules [19] . For instance, 20 nm, 8 Gbit DDR-compatible PCM mod- 

ules announced by Samsung are now available in the market for 

embedded mobile devices. The PCM chip can provide a program 

bandwidth of 40 MB/s [20] , making it an ideal candidate for fu- 

ture storage systems. This paper focuses on the architectural and 

operating system support for PCM-based SCM. 

Table 1 shows the access latency and endurance properties of 

DRAM, NAND flash memory, and PCM. Compared to DRAM, PCM 

handles read operations at the same or half speed but write op- 

erations about 100 times slower. In addition, PCM excels in idle 

power but costs 10 times more write energy. Thus the cache hi- 

erarchy is needed in future systems to improve write performance 

for PCM. Compared to NAND flash memory, PCM has much better 

access latency while achieving a similar energy consumption level. 

Although raw PCM is much more endurable (10 8 ) compared to 

flash memory (10 4 for MLC NAND flash and 10 5 for SLC NAND 

flash), it still suffers from the limited maximum number of write 

cycles per cell [21,22] Numerous attempts at the architectural level 

have been made to tackle this problem [23–25] , some of which 

provide guarantees to prolong the lifetime of PCM [26–29] . In this 

paper, we assume that the endurance problem has been taken care 

at the architectural level. This work focuses only on providing ar- 

chitectural and OS designs to adopt PCM in modern computer sys- 



Download English Version:

https://daneshyari.com/en/article/4956292

Download Persian Version:

https://daneshyari.com/article/4956292

Daneshyari.com

https://daneshyari.com/en/article/4956292
https://daneshyari.com/article/4956292
https://daneshyari.com

