
ARTICLE IN PRESS 

JID: SYSARC [m5G; May 5, 2016;12:58 ] 

Journal of Systems Architecture 0 0 0 (2016) 1–11 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

A comprehensive reconfigurable computing approach to memory wall 

problem of large graph computation 

Xu Wang 

a , Yongxin Zhu 

a , b , ∗, Linan Huang 

a 

a School of Microelectronics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. 
b School of Computing, National University of Singapore, Singapore. 

a r t i c l e i n f o 

Article history: 

Received 1 October 2015 

Revised 21 January 2016 

Accepted 14 April 2016 

Available online xxx 

Keywords: 

Embedded architecture 

FPGA 

Graph computing 

Hardware implementation 

Memory wall problem 

a b s t r a c t 

Graph computation problems that exhibit irregular memory access patterns are known to show poor 

performance on multiprocessor architectures. Although recent studies use FPGA technology to tackle the 

memory wall problem of graph computation by adopting a massively multi-threaded architecture, the 

performance is still far less than optimal memory performance due to the long memory access latency. 

In this paper, we propose a comprehensive reconfigurable computing approach to address the memory 

wall problem. First, we present an extended edge-streaming model with massive partitions to provide 

better load balance while taking advantage of the streaming bandwidth of external memory in processing 

large graphs. Second, we propose a two-level shuffle network architecture to significantly reduce the on- 

chip memory requirement while provide high processing throughput that matches the bandwidth of the 

external memory. Third, we introduce a compact storage design based on graph compression schemes 

and propose the corresponding encoding and decoding hardware to reduce the data volume transferred 

between the processing engines and external memory. We validate the effectiveness of the proposed 

architecture by implementing three frequently-used graph algorithms on ML605 board, showing an up to 

3.85 × improvement in terms of performance to bandwidth ratio over previously published FPGA-based 

implementations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Graphs are widely used abstraction to express relationships be- 

tween real-world data elements such as web graphs, telecommu- 

nication networks [1] and task [2] , whose mining calculation can 

be abstracted into graph computing. Existing systems for executing 

graph computations are mainly targeted on general-purpose com- 

puters [3] or clusters of general-purpose computers [4–6] . How- 

ever, they are usually inefficient at performing graph computations 

due to the irregularity of memory accesses causing large num- 

bers of cache misses and the high data access to computation ratio 

causing stalls of the floating-point computation units. 

The memory wall problem [7] is the key issue in graph com- 

putation. Although new memory devices such as Reduced Latency 

Dynamic RAMs (RLDRAM) are developed to address the problem, 

the compromise on memory capacity for access latency limits their 

usage on large-scale graph computation. 

∗ Corresponding author. 

E-mail addresses: wang2002xu@gmail.com (X. Wang), zhuyongxin@sjtu.edu.cn, 

yongxin.zhu@nus.edu.sg (Y. Zhu), huanglinan@sjtu.edu.cn (L. Huang). 

Reconfigurable computing based on Field Programmable Gate 

Array (FPGA) technologies becomes an attractive option to attack 

the memory wall problem of the graph computation for its avail- 

ability of massive parallel on-chip resources with flexible intercon- 

nect to support fine-grained communication as well as abundant 

I/O pins to provide high off-chip memory bandwidth. Recent stud- 

ies have leveraged such advantages to solve graph problems such 

as breadth-first search [8,9] , all pairs shortest paths [10,11] , and 

Sparse Matrix-Vector Multiplication kernels [12] in FPGA-based 

platforms. Many of them adopt a massively multi-threaded archi- 

tecture that allows issuing multiple outstanding memory requests 

to the parallel memory banks of shared off-chip memory with ded- 

icated hardware support such as the Convey HC-1 [13] . Although 

such architecture can exploit the memory controller bandwidth by 

keeping it busy with every clock cycle either for writing or reading, 

there is still a large gap from its peak memory access performance. 

Because the irregular memory access patterns in the graph-based 

algorithms can cause more page misses in DRAM memories, so the 

memory throughput is decreased due to the relatively long mem- 

ory latencies. 

In this paper, we address the memory wall problem by taking 

advantage of sequential streaming bandwidth of external DRAM 

http://dx.doi.org/10.1016/j.sysarc.2016.04.010 

1383-7621/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: X. Wang et al., A comprehensive reconfigurable computing approach to memory wall problem of large graph 

computation, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.04.010 

http://dx.doi.org/10.1016/j.sysarc.2016.04.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:wang2002xu@gmail.com
mailto:zhuyongxin@sjtu.edu.cn, \ignorespaces yongxin.zhu@nus.edu.sg
mailto:huanglinan@sjtu.edu.cn
http://dx.doi.org/10.1016/j.sysarc.2016.04.010
http://dx.doi.org/10.1016/j.sysarc.2016.04.010


2 X. Wang et al. / Journal of Systems Architecture 0 0 0 (2016) 1–11 

ARTICLE IN PRESS 

JID: SYSARC [m5G; May 5, 2016;12:58 ] 

memory. Considering the fact that nature graphs have a much 

larger edge set than vertex set, access to edges and updates dom- 

inates the processing cost. Therefore, we adopt an edge-streaming 

model motivated by X-Stream [14] , which iterates over edges and 

updates rather than over vertices. In our design, we stream edges 

from external DRAM memory while makes random access to the 

set of vertices in on-chip SRAM, leading to a fully utilization of ex- 

ternal memory bandwidth in burst mode. 

In order to support larger graphs which vertex data is not able 

to fit into the on-chip memory, we extend the edge-streaming 

model with massive partitions. In stead of shuffling the interme- 

diate update results directly into its destination processing engine 

(PE), as we did in our previous work [15] to process small graphs, 

we wrote the intermediate updates back to slow storage (exter- 

nal DRAM memory), and read again when needed by the execu- 

tion unit. We further analyzed several possible partition and work- 

load assignment solutions to support such extension and proposed 

an optimized architecture with fine-grained partitions to achieve 

a more balanced load assignment among both PEs and on-chip 

memory banks. 

Shuffling updates from all PEs into a much larger number of 

partitions leads to a significant challenge in designing the shuffle 

network architecture. In order to maintaining our design goal of 

exploiting sequential-access bandwidth to memory, it needs more 

on-chip memory to buffer shuffled updates. To address the prob- 

lem, we proposed a two-level shuffle network, where each PE first 

shuffles the updates into several macro-partitions and then in the 

second level, these macro-partitions are further shuffled into final 

partitions by dedicated shuffle engines in parallel. The two-level 

shuffle network is able to reduce the on-chip memory require- 

ment significantly while provide high processing throughput that 

matches the bandwidth of the external memory. 

In addition to increase the utilization of the external mem- 

ory bandwidth that improves the overall memory performance, we 

further ease the memory-bounded bottleneck by reducing the de- 

mand for memory access. We introduce a compact storage design 

based on graph compression schemes to reduce the data volume 

transferred between the processing engines and external mem- 

ory. We also propose the hardware design of encoding and de- 

coding logic to offload the computation overhead involved with 

graph compression while not break the streaming access pattern 

of external memory. With this compression scheme, data streams 

from the external memory can carry more information within the 

same memory bandwidth, which can in return increase the system 

throughput in terms of edges processed per second. 

To verify our architecture, we experiment three graph algo- 

rithms under six different graphs in ML605 board. The major con- 

tributions of this work include: 

• The extension of the edge-streaming model with massive par- 

titions for reconfigurable hardware acceleration of graph prob- 

lems, which supports larger graphs while provides a better load 

balance. 
• A two-level shuffle network architecture to significantly reduce 

the on-chip memory requirement while provide high process- 

ing throughput that matches the bandwidth of the external 

memory. 
• A compact storage design based on graph compression schemes 

and the corresponding encoding and decoding hardware to re- 

duce the data volume transferred between the processing en- 

gines and external memory. 
• Verification of our extended architecture on a ML605 system 

using three de-facto benchmark with detailed comparison of 

the state-of-the-art hardware implementation, showing up to 

3.85 times improvement in terms of performance to bandwidth 

ratio. 

5

0

1

2

3
4

0 3 5 7 8 90

1 2 4 3 4 3 5 5 5 1

Fig. 1. Example of CSR representation. 

The remainder of this paper is organized as follows. 

Section 2 introduces the background and motivation of our 

work. Section 3 presents our approach to address memory wall 

problem including the edge-streaming model with massive par- 

titions, the two-level shuffle network architecture and the graph 

compression scheme. In Section 4 , we verify our architecture with 

performance results. We review the related work in Section 5 and 

conclude our work in Section 6 . 

2. Background and motivation 

2.1. Preliminaries 

Generally, graph structure is abstracted as an ordered pair sets 

G = (V, E) , which comprises the set V of n vertices and the set E 

of m directed edges. An edge connecting vertex u and v can be de- 

noted as e = (u, v ) , where u is the source and v is the destination. 

Consequently, e is an outgoing edge and inbound edge of u and 

v respectively. For a given vertex u , if �+ (u ) = { v ∈ V | (u, v ) ∈ E} , 
then �+ (u ) is the set of all outgoing neighbors of vertex u and 

its out-degree denoted as d + (u ) = | �+ (u ) | is the number of edges 

with u as the source vertex. Accordingly, �−(u ) and d −(u ) are re- 

ferred as the inbound neighbors and in-degree of u in a directed 

graph G , where �−(u ) = { v ∈ V | (v , u ) ∈ E} and d −(u ) = | �−(u ) | . 
Arbitrary data can be associated with vertex u to retain state 

stored in u and the data is denoted as { D u : u ∈ V }. Usually the 

value of D u will be updated during the execution of graph algo- 

rithms while the topology of G remains unchanged. 

2.2. Graph representation 

Compressed sparse row (CSR) is a compact representation for- 

mat of graph. The CSR format stores a whole graph into two ar- 

rays: vertex offset array V [ ] and edge index array E [ ]. Edge in- 

dex array contains destinations of outgoing edges of all vertices, 

which are sorted by their source vertex. Vertex offset array stores 

offsets of the first outgoing edge from each vertex. In CSR format, 

the out-degree of a given vertex u can be calculated as d + (u ) = 

V [ u + 1] − V [ u ] . Correspondingly, compressed sparse column (CSC) 

format allows fast sequential access to the in-edges for vertices. 

These representations minimize memory use to O (n + m ) , where 

n and m are the number of vertices and edges. Fig. 1 shows an 

example of CSR representation. 

2.3. Memory wall problem of graph computation 

Most of the graph algorithms can be expressed in vertex-centric 

model described in Algorithm 1 . Each vertex collects and adds up 

the updates generated along its inbound edges by gather func- 

tion g ( ·) and the sum will be used to modify vertex associated 

data field by apply function a ( ·). However, simply implementing 

the vertex-centric model does not enable efficient graph compu- 

tation. Since for each vertex, all vertex value of its inbound neigh- 

bors are accessed by indirect memory reference under CSC format, 

Please cite this article as: X. Wang et al., A comprehensive reconfigurable computing approach to memory wall problem of large graph 

computation, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.04.010 

http://dx.doi.org/10.1016/j.sysarc.2016.04.010


Download English Version:

https://daneshyari.com/en/article/4956305

Download Persian Version:

https://daneshyari.com/article/4956305

Daneshyari.com

https://daneshyari.com/en/article/4956305
https://daneshyari.com/article/4956305
https://daneshyari.com

