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a b s t r a c t 

Understanding the behaviour of distributed computer systems with many threads and resources is a chal- 

lenging task. Dynamic analysis tools such as tracers have been developed to assist programmers in de- 

bugging and optimizing the performance of such systems. However, complex systems can generate huge 

traces, with billions of events, which are hard to analyze manually. Trace visualization and analysis pro- 

grams aim to solve this problem. Such software needs fast access to data, which a linear search through 

the trace cannot provide. Several programs have resorted to stateful analysis to rearrange data into more 

query friendly structures. 

In previous work, we suggested modifications to the State History Tree (SHT) data structure to correct 

its disk and memory usage. While the improved structure, eSHT, made near optimal disk usage and had 

reduced memory usage, we found that query performance, while twice as fast, exhibited scaling limita- 

tions. 

In this paper, we proposed a new structure using R-Tree techniques to improve query performance. We 

explain the hybrid scheme and algorithms used to optimize the structure to model the expected be- 

haviour. Finally, we benchmark the data structure on highly parallel traces and on a demanding trace 

visualization use case. 

Our results show that the hybrid R-SHT structure retains the eSHT’s optimal disk usage properties while 

providing several orders of magnitude speed up to queries on highly parallel traces. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Understanding the runtime behavior of complex computer sys- 

tems is a daunting task. Tracing is one of many runtime analysis 

methods used to instrument and collect data on systems and ap- 

plications. Compared to logging, tracers have much lower overhead 

and can produce hundreds of thousands of events per second, at 

nanosecond precision, providing extremely detailed information on 

kernel, process and hardware states. 

Tracers produce trace files, a series of chronological events, 

which are optimized for low overhead and data storage but chal- 

lenging for human operators to understand. A number of software 

solutions, called trace visualizers, have been developed to facil- 

itate the understanding of these files by providing graphical vi- 

sualizations, statistics and detailed analysis of certain use cases. 

These programs perform stateful analysis, that transform event- 
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based data structures into state-based structures, and reorganize 

data from lists to trees, for faster access. 

Indeed, when traces reach gigabyte or terabyte size, efficient 

data structures are important for maintaining sustainable perfor- 

mance levels for analysis, and low latency for interactive visualiza- 

tions. Said data structures must be able to scale horizontally – for 

tracing programs over a large duration – as well as vertically – for 

tracing systems with many processors, threads and resources. 

Among the existing data structures, some are optimized for disk 

storage, build time or perhaps query performance. When working 

on trace visualization, the latter is fairly important. R-Trees are a 

family of data structures used to index multi-dimensional data sets 

and offer excellent query performance. 

In previous work Prieur-Drevon et al. (2016) , we presented a 

self-defined tree structure, optimized for external memory storage 

and with satisfactory query performance. However, we found that 

query performance scaled linearly to the number of components 

in the system, which led to slowdowns for the analysis of systems 

with many threads for example. 

In this paper, we propose an enhanced, configurable build al- 

gorithm that reorganizes data in the sub-trees so that they reflect 

properties of an efficient R-Tree. The types of queries we optimize 
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for are at least two orders of magnitude faster on R-SHTs with a 

million time series than the equivalent eSHT. These gains result in 

a minimum 7 times speedup for the visualization of large traces. 

This paper is organized as follows. First we cover related 

research on trace visualizers and underlying data structures in 

Section 2 . Then we present the architecture of the current data 

structure in Section 3 as well as that of the evolutions we sug- 

gest in Sections 4 and 5 . In Section 6 , we model the behavior of 

the query algorithms before benchmarking them on real-life traces 

in Section 7 . Finally, we conclude and suggest future work. 

2. Related work 

2.1. Trace visualizers 

In this section, we compare open source trace visualizers that 

deal with stateful analysis and have a documented data structure 

to store this information. 

Jumpshot ( Chan et al., 2008 ) is the visualization component 

for the MPI Parallel Environment software package. It displays the 

nodes’ states evolutions over time and the messages that they have 

exchanged. Jumpshot uses the slog2 format to reduce the cost 

of accessing trace data. When using the MPE tracing framework 

for MPI, users have the option for a state based logging format, in 

which the tracer directly produces state intervals, as opposed to 

event based tracing, which produces a list of timestamped events. 

However, Jumpshot is focused on MPI visualization and doesn’t 

provide detailed analysis capabilities. 

The TAU Performance System ( Shende and Malony, 2006 ) 

is a set of Tuning and Analysis Utilities to collect data from func- 

tion, method, block and statement instrumentation as well as 

event-based sampling. Its visualizer, Paraprof ( Bell et al., 2003 ) 

aggregates and stores data in a CUBE ( Geimer et al., 2007 ) data 

structure, which is based around a Cube data model, with one di- 

mension for metrics, another for programs and a third dimension 

for the system. When in memory, Paraprof stores its data as a dou- 

ble level map of vectors, keyed by the metric, then the call path 

and finally the process number. Despite all its capabilities, Paraprof 

does not provide stateful information on the systems’ performance, 

rather focusing on metrics. 

Aftermath ( Pop and Cohen, 2013 ) provides visualization and 

analysis for traces from task-parallel work-flows. As part of the 

OpenStream project, it relies heavily on aggregation of trace points 

from the application as well as the runtime, and performance 

counters. Its creators state that the software can scale up to traces 

of several gigabytes in size while remaining fast thanks to the 

use of augmented interval trees as a backend. However, Aftermath 

stores the entire trace in memory, thus limiting its scalability. 

Google has built tracing into Chromium ( Google, 2013 ) to help 

developers identify slowdowns originating from either JavaScript, 

C++, or other bottlenecks. The visualizer easily scales to the num- 

ber of threads used by chrome and the flame-graphs of some deep 

call stacks. Withal, Chromium Tracing is obviously restricted to an- 

alyzing Chrome’s performance, yet shows the appeal of tracing and 

analysis for diversified applications. 

Pajé ViTE ( Coulomb et al., 2012 ) is developed for Pajé or OTF 

traces from parallel or distributed applications. It can scale to dis- 

play millions of events per view and large computing clusters by 

storing trace events in a balanced binary tree, which is however 

limited by the size of the main memory. 

Trace Compass ( Côté and Dagenais, 2016 ) is the extensi- 

ble trace visualizer and analyzer for traces generated by the 

LTTng ( Desnoyers and Dagenais, 2006 ) tracer and other tracing 

tools. It is built using the Eclipse framework and uses State His- 

tory Trees (SHT) to store state data in a query-efficient structure. 

It supports a number of different trace formats and offers com- 

prehensive analysis modules. Because of its flexibility, it is equally 

effective for analysing real-time programs running on a single sys- 

tem, as it is with multi-threading, DSP and GPU architectures, and 

distributed or virtualized systems. 

Distributed systems, which rely on the MPI standard also have 

a number of dedicated tools to analyse their specificities. 

HPCTraceviewer ( Adhianto et al., 2008 ) is the visualization 

component in the HPCToolkit. It is used for performance mea- 

surement and analysis on large supercomputers. By relying on a 

client/server architecture, it avoids moving gigabytes of trace files 

and benefits from the computing power and memory of MPI nodes 

to process raw data. 

The VampirTrace ( Müller et al., 2007 ) visualizer relies on a 

client/server architecture with parallel servers to scale up for read- 

ing large distributed traces. The nodes interact via standard MPI 

primitives and precompute the required information before send- 

ing the results over to the client. 

ScalaTrace ( Noeth et al., 2009 ) relies on local and global 

compression to reduce the sizes of MPI traces dramaticaly and pre- 

process trace comparison. This results in constant size or sublinear 

growth sizes compared to the number of nodes. 

However, when working on huge traces, the aforestated soft- 

ware cannot afford to query directly the trace itself, as the query 

length could grow linearly with the trace size. This is why such 

programs transform traces into other data structures that are more 

efficient for querying. Most programs choose to store “stateful”

data, i.e., one object per state ( Ezzati-Jivan and Dagenais, 2012 ). 

For example, the state of the Attribute “thread/42/Status” could be 

“Sleep” between two specific time-stamps. 

2.2. Stateful data structures 

In this section, we compare the data structures used by afore- 

mentioned trace visualizers and generic data structures used for 

multidimensional data. The following structures focus on query 

performance. 

B-Trees ( Comer, 1979 ) were one of the first index structures 

developed to accelerate accesses to external memory data struc- 

tures. B-Trees extend binary search trees by giving each node be- 

tween d and 2 d keys as well as d + 1 to 2 d + 1 pointers to children 

nodes, in which case the tree is of order d . All the values in the 

sub-tree referenced by the i th pointer are larger than the i th key 

and smaller than the (i + 1) th. 

Multi-version B-Trees ( Becker et al., 1996 ) store data 

items of the type < key, t start , t end , pointer > where key is unique 

for every version and t start , t end are the version numbers for the 

item’s lifespan. It has a number of B-Tree root nodes that each 

stand for an interval of versions. Each operation (insertion or dele- 

tion) creates a new version. Versioning uses live blocks which du- 

plicate the open intervals of the old block and have free space to 

store future values. 

Interval Trees ( Cormen, 2009 ) are tree structures de- 

signed to efficiently find time intervals that overlap a certain 

timestamp. Different implementations of interval trees exist in the 

literature. Aftermath for example, uses Augmented Interval 
Trees ( Har-Peled, 2011 ) which are based on ordered tree struc- 

tures. These are typically binary trees or self-balancing binary 

search trees, where the interval start time is used for ordering. 

Each node is “augmented” with the latest end time of the asso- 

ciated sub-tree. Knowing the end times of the sub-tree tells the 

algorithms which nodes they can skip when searching for inter- 

vals. The Centered Interval Tree implementation is similar 

to a binary search tree, with each node using a time t as a key 

such that all the intervals in the left node end before t , all the in- 

tervals in the right node start after t , and the node contains all 

intervals overlapping t . The tree is balanced when the left and 
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