
The Journal of Systems and Software 135 (2018) 55–68

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

R-SHT: A state history tree with R-Tree properties for analysis and

visualization of highly parallel system traces

L. Prieur-Drevon

∗, R. Beamonte , M.R. Dagenais ∗∗

Ecole Polytechnique de Montreal, Computer and Software Engineering Department, Canada

a r t i c l e i n f o

Article history:

Received 31 January 2017

Revised 30 July 2017

Accepted 22 September 2017

Available online 23 September 2017

Keywords:

Tracing

Stateful analysis

Tree

Data structure

External memory

a b s t r a c t

Understanding the behaviour of distributed computer systems with many threads and resources is a chal-

lenging task. Dynamic analysis tools such as tracers have been developed to assist programmers in de-

bugging and optimizing the performance of such systems. However, complex systems can generate huge

traces, with billions of events, which are hard to analyze manually. Trace visualization and analysis pro-

grams aim to solve this problem. Such software needs fast access to data, which a linear search through

the trace cannot provide. Several programs have resorted to stateful analysis to rearrange data into more

query friendly structures.

In previous work, we suggested modifications to the State History Tree (SHT) data structure to correct

its disk and memory usage. While the improved structure, eSHT, made near optimal disk usage and had

reduced memory usage, we found that query performance, while twice as fast, exhibited scaling limita-

tions.

In this paper, we proposed a new structure using R-Tree techniques to improve query performance. We

explain the hybrid scheme and algorithms used to optimize the structure to model the expected be-

haviour. Finally, we benchmark the data structure on highly parallel traces and on a demanding trace

visualization use case.

Our results show that the hybrid R-SHT structure retains the eSHT’s optimal disk usage properties while

providing several orders of magnitude speed up to queries on highly parallel traces.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the runtime behavior of complex computer sys-

tems is a daunting task. Tracing is one of many runtime analysis

methods used to instrument and collect data on systems and ap-

plications. Compared to logging, tracers have much lower overhead

and can produce hundreds of thousands of events per second, at

nanosecond precision, providing extremely detailed information on

kernel, process and hardware states.

Tracers produce trace files, a series of chronological events,

which are optimized for low overhead and data storage but chal-

lenging for human operators to understand. A number of software

solutions, called trace visualizers, have been developed to facil-

itate the understanding of these files by providing graphical vi-

sualizations, statistics and detailed analysis of certain use cases.

These programs perform stateful analysis, that transform event-

∗ Corresponding author.
∗∗ Corresponding author.

E-mail addresses: loic.prieur-drevon@polymtl.ca (L. Prieur-Drevon),

raphael.beamonte@polymtl.ca (R. Beamonte), michel.dagenais@polymtl.ca

(M.R. Dagenais).

based data structures into state-based structures, and reorganize

data from lists to trees, for faster access.

Indeed, when traces reach gigabyte or terabyte size, efficient

data structures are important for maintaining sustainable perfor-

mance levels for analysis, and low latency for interactive visualiza-

tions. Said data structures must be able to scale horizontally – for

tracing programs over a large duration – as well as vertically – for

tracing systems with many processors, threads and resources.

Among the existing data structures, some are optimized for disk

storage, build time or perhaps query performance. When working

on trace visualization, the latter is fairly important. R-Trees are a

family of data structures used to index multi-dimensional data sets

and offer excellent query performance.

In previous work Prieur-Drevon et al. (2016) , we presented a

self-defined tree structure, optimized for external memory storage

and with satisfactory query performance. However, we found that

query performance scaled linearly to the number of components

in the system, which led to slowdowns for the analysis of systems

with many threads for example.

In this paper, we propose an enhanced, configurable build al-

gorithm that reorganizes data in the sub-trees so that they reflect

properties of an efficient R-Tree. The types of queries we optimize

https://doi.org/10.1016/j.jss.2017.09.023

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.09.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.09.023&domain=pdf
mailto:loic.prieur-drevon@polymtl.ca
mailto:raphael.beamonte@polymtl.ca
mailto:michel.dagenais@polymtl.ca
https://doi.org/10.1016/j.jss.2017.09.023

56 L. Prieur-Drevon et al. / The Journal of Systems and Software 135 (2018) 55–68

for are at least two orders of magnitude faster on R-SHTs with a

million time series than the equivalent eSHT. These gains result in

a minimum 7 times speedup for the visualization of large traces.

This paper is organized as follows. First we cover related

research on trace visualizers and underlying data structures in

Section 2 . Then we present the architecture of the current data

structure in Section 3 as well as that of the evolutions we sug-

gest in Sections 4 and 5 . In Section 6 , we model the behavior of

the query algorithms before benchmarking them on real-life traces

in Section 7 . Finally, we conclude and suggest future work.

2. Related work

2.1. Trace visualizers

In this section, we compare open source trace visualizers that

deal with stateful analysis and have a documented data structure

to store this information.

Jumpshot (Chan et al., 2008) is the visualization component

for the MPI Parallel Environment software package. It displays the

nodes’ states evolutions over time and the messages that they have

exchanged. Jumpshot uses the slog2 format to reduce the cost

of accessing trace data. When using the MPE tracing framework

for MPI, users have the option for a state based logging format, in

which the tracer directly produces state intervals, as opposed to

event based tracing, which produces a list of timestamped events.

However, Jumpshot is focused on MPI visualization and doesn’t

provide detailed analysis capabilities.

The TAU Performance System (Shende and Malony, 2006)

is a set of Tuning and Analysis Utilities to collect data from func-

tion, method, block and statement instrumentation as well as

event-based sampling. Its visualizer, Paraprof (Bell et al., 2003)

aggregates and stores data in a CUBE (Geimer et al., 2007) data

structure, which is based around a Cube data model, with one di-

mension for metrics, another for programs and a third dimension

for the system. When in memory, Paraprof stores its data as a dou-

ble level map of vectors, keyed by the metric, then the call path

and finally the process number. Despite all its capabilities, Paraprof

does not provide stateful information on the systems’ performance,

rather focusing on metrics.

Aftermath (Pop and Cohen, 2013) provides visualization and

analysis for traces from task-parallel work-flows. As part of the

OpenStream project, it relies heavily on aggregation of trace points

from the application as well as the runtime, and performance

counters. Its creators state that the software can scale up to traces

of several gigabytes in size while remaining fast thanks to the

use of augmented interval trees as a backend. However, Aftermath

stores the entire trace in memory, thus limiting its scalability.

Google has built tracing into Chromium (Google, 2013) to help

developers identify slowdowns originating from either JavaScript,

C++, or other bottlenecks. The visualizer easily scales to the num-

ber of threads used by chrome and the flame-graphs of some deep

call stacks. Withal, Chromium Tracing is obviously restricted to an-

alyzing Chrome’s performance, yet shows the appeal of tracing and

analysis for diversified applications.

Pajé ViTE (Coulomb et al., 2012) is developed for Pajé or OTF

traces from parallel or distributed applications. It can scale to dis-

play millions of events per view and large computing clusters by

storing trace events in a balanced binary tree, which is however

limited by the size of the main memory.

Trace Compass (Côté and Dagenais, 2016) is the extensi-

ble trace visualizer and analyzer for traces generated by the

LTTng (Desnoyers and Dagenais, 2006) tracer and other tracing

tools. It is built using the Eclipse framework and uses State His-

tory Trees (SHT) to store state data in a query-efficient structure.

It supports a number of different trace formats and offers com-

prehensive analysis modules. Because of its flexibility, it is equally

effective for analysing real-time programs running on a single sys-

tem, as it is with multi-threading, DSP and GPU architectures, and

distributed or virtualized systems.

Distributed systems, which rely on the MPI standard also have

a number of dedicated tools to analyse their specificities.

HPCTraceviewer (Adhianto et al., 2008) is the visualization

component in the HPCToolkit. It is used for performance mea-

surement and analysis on large supercomputers. By relying on a

client/server architecture, it avoids moving gigabytes of trace files

and benefits from the computing power and memory of MPI nodes

to process raw data.

The VampirTrace (Müller et al., 2007) visualizer relies on a

client/server architecture with parallel servers to scale up for read-

ing large distributed traces. The nodes interact via standard MPI

primitives and precompute the required information before send-

ing the results over to the client.

ScalaTrace (Noeth et al., 2009) relies on local and global

compression to reduce the sizes of MPI traces dramaticaly and pre-

process trace comparison. This results in constant size or sublinear

growth sizes compared to the number of nodes.

However, when working on huge traces, the aforestated soft-

ware cannot afford to query directly the trace itself, as the query

length could grow linearly with the trace size. This is why such

programs transform traces into other data structures that are more

efficient for querying. Most programs choose to store “stateful”

data, i.e., one object per state (Ezzati-Jivan and Dagenais, 2012).

For example, the state of the Attribute “thread/42/Status” could be

“Sleep” between two specific time-stamps.

2.2. Stateful data structures

In this section, we compare the data structures used by afore-

mentioned trace visualizers and generic data structures used for

multidimensional data. The following structures focus on query

performance.

B-Trees (Comer, 1979) were one of the first index structures

developed to accelerate accesses to external memory data struc-

tures. B-Trees extend binary search trees by giving each node be-

tween d and 2 d keys as well as d + 1 to 2 d + 1 pointers to children

nodes, in which case the tree is of order d . All the values in the

sub-tree referenced by the i th pointer are larger than the i th key

and smaller than the (i + 1) th.

Multi-version B-Trees (Becker et al., 1996) store data

items of the type < key, t start , t end , pointer > where key is unique

for every version and t start , t end are the version numbers for the

item’s lifespan. It has a number of B-Tree root nodes that each

stand for an interval of versions. Each operation (insertion or dele-

tion) creates a new version. Versioning uses live blocks which du-

plicate the open intervals of the old block and have free space to

store future values.

Interval Trees (Cormen, 2009) are tree structures de-

signed to efficiently find time intervals that overlap a certain

timestamp. Different implementations of interval trees exist in the

literature. Aftermath for example, uses Augmented Interval
Trees (Har-Peled, 2011) which are based on ordered tree struc-

tures. These are typically binary trees or self-balancing binary

search trees, where the interval start time is used for ordering.

Each node is “augmented” with the latest end time of the asso-

ciated sub-tree. Knowing the end times of the sub-tree tells the

algorithms which nodes they can skip when searching for inter-

vals. The Centered Interval Tree implementation is similar

to a binary search tree, with each node using a time t as a key

such that all the intervals in the left node end before t , all the in-

tervals in the right node start after t , and the node contains all

intervals overlapping t . The tree is balanced when the left and

Download English Version:

https://daneshyari.com/en/article/4956318

Download Persian Version:

https://daneshyari.com/article/4956318

Daneshyari.com

https://daneshyari.com/en/article/4956318
https://daneshyari.com/article/4956318
https://daneshyari.com

