
The Journal of Systems and Software 130 (2017) 81–93

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A search engine for finding and reusing architecturally significant code

Ibrahim Jameel Mujhid, Joanna C. S. Santos, Raghuram Gopalakrishnan, Mehdi Mirakhorli ∗

Software Engineering Department, Rochester Institute of Technology, Rochester, NY, United States

a r t i c l e i n f o

Article history:

Received 16 February 2016

Revised 12 August 2016

Accepted 23 November 2016

Available online 29 November 2016

Keywords:

Architecture

Traceability

Tactics

Information

Models

a b s t r a c t

Architectural tactics are the building blocks of software architecture. They describe solutions for address-

ing specific quality concerns, and are prevalent across many software systems. Once a decision is made

to utilize a tactic, the developer must generate a concrete plan for writing code and implementing the

tactic. Unfortunately, this is a non-trivial task even for experienced developers. Often, developers resort

to using search engines, crowd-sourcing websites, or discussion forums to find sample code snippets to

implement a tactic. A fundamental problem of finding implementation for architectural tactics/patterns

is the mismatch between the high-level intent reflected in the descriptions of these patterns and the

low-level implementation details of them. To reduce this mismatch, we created a novel Tactic Search En-

gine called ArchEngine (ARCHitecture search ENGINE). ArchEngine can replace this manual internet-based

search process and help developers find and reuse tactical code from a wide range of open source sys-

tems. ArchEngine helps developers find implementation examples of an architectural tactic for a given

technical context. It uses information retrieval and program analysis techniques to retrieve applications

that implement these design concepts. Furthermore, it lists and rank the code snippets where the pat-

terns/tactics are located. Our case study with 21 graduate students (with experience level of junior soft-

ware developers) shows that ArchEngine is more effective than other search engines (e.g., Krugle and

Koders) in helping programmers to quickly find implementations of architectural tactics/patterns.

© 2016 Published by Elsevier Inc.

1. Introduction

In order to speed up the development process, many program-

mers reuse existing code. Often they find that there are generic

functionalities that other programmers wrote and these fragments

can be reused. Socio-technical websites such as StackOverflow, and

code search engines (e.g., Google Code, Koders) are the primary re-

sources that developers often use for finding and reusing source

code or even for getting ideas on how to implement a feature.

However, this can be challenging when it comes to reusing archi-

tecturally significant codes (Mirakhorli et al., 2012b) – code snip-

pets that implement architectural patterns (Hanmer, 2007) and

tactics (Bass et al., 2003). A fundamental problem is related to

the difficulties in identifying and tagging architectural patterns and

tactics in the source code of a project. As a result, the current

search engines such as Google Code, Koders or even those devel-

oped in academia (Mcmillan et al., 2013) fail to incorporate these

design concepts in their underlying search algorithms.

∗ Corresponding author.

E-mail addresses: ijm9654@rit.edu (I.J. Mujhid), jds5109@rit.edu (J.C. S. San-

tos), rg8772@rit.edu (R. Gopalakrishnan), mehdi@se.rit.edu , mxmvse@rit.edu (M.

Mirakhorli).

With the increasingly adoption of iterative incremental software

development practices and integration of coding and design activ-

ities, there is a growing need for search engines that helps de-

velopers identify and reuse code snippets related to the architec-

tural patterns/tactics. In a simple search through the web, one can

find several examples of online posts made by developers request-

ing help in online forums because they did not understand how

to implement specific patterns/tactics. Fig. 1 shows three exam-

ples of such questions. One developer is seeking help regarding

the generic implementation of a Pooling tactic in C#. While two

others are looking for specific implementation of tactics in particu-

lar context/technology. Another one wants to implement role-based

access control along with Struts framework , while the third one is

seeking samples to implement heartbeat reliability tactic between

clients and a server .

These examples show that typically developers’ query for a

sample tactical code has two parts, (i) the desired tactic and (ii)

a particular context or technology in which the tactic needs to be

implemented. Therefore, a search engine not only needs to iden-

tify and index occurrence of architectural tactics, but also needs

to identify the technical context in which the tactic is imple-

mented. State of the art, in the area of enhancing code reuse,

relies on application of data-mining and natural language pro-

cessing (NLP) techniques to build source code recommender sys-

http://dx.doi.org/10.1016/j.jss.2016.11.034

0164-1212/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jss.2016.11.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.034&domain=pdf
mailto:ijm9654@rit.edu
mailto:jds5109@rit.edu
mailto:rg8772@rit.edu
mailto:mehdi@se.rit.edu
mailto:mxmvse@rit.edu
http://dx.doi.org/10.1016/j.jss.2016.11.034

82 I.J. Mujhid et al. / The Journal of Systems and Software 130 (2017) 81–93

Fig. 1. Developers seek help in online forums to implement architectural patterns/tactics.

tems (McMillan et al., 2012b), and search engines (Chatterjee et al.,

2009a; Grechanik et al., 2010; Stylos and Myers, 2006). However,

the primary intent of these techniques is retrieving generic func-

tional code and not tactical code. Moreover, these techniques do

not differentiate between the search concept and the technical

context where the concept is implemented.

The difficulty of detecting architectural patterns/tactics as well

as challenges for identifying the technical context within the

source code of a project are the two main reasons that the no-

tion of reusing architecturally significant source code is not well

explored in the software architecture community.

In this paper, we address these limitations by presenting and

rigorously validating ArchEngine, a novel search engine designed

for retrieving architecturally significant code snippets. ArchEngine

supports the developers in finding and reusing relevant source files

that implement an architectural tactic using a particular technol-

ogy. The users search request is reflected in query terms (i.e., Au-

thentication using Spring Framework over HTTP channel).

To build a source code search engine for architectural tactics,

ArchEngine: (i) relies on a novel text-based classification tech-

nique to automate the discovery, extraction and indexing of ar-

chitectural tactics across 116,609 open-source systems. (ii) It im-

plements a big data compatible architecture to search efficiently

through 22 million source files of these projects. (iii) It uses in-

formation retrieval (Manning et al., 2008b) and structural analysis

techniques (Pressman, 2005; Mathiassen et al., 20 0 0) to detect tac-

tics and to identify the technical context in which the tactic has

been used. Lastly, (iv) it utilizes a novel ranking algorithm to or-

der the retrieved tactical files based on both tactic-correctness and

relevancy to the technical context stated in the users query.

In our case study, 21 graduate students with the industry ex-

perience level equivalent to a junior software developer 1 evalu-

ated the accuracy and practicality of the ArchEngine. The results

show, with strong statistical significance, that users find more

relevant tactical code snippets with higher precision when they

use ArchEngine rather than other search engines such as Krugle,

Koders, GitHub, and Portfolio. ArchEngine is available for public use

at 2 .

1 Between one year to three years of software development experience.
2 http://design.se.rit.edu/ArchEngine/ .

The remainder of this paper is structured as follows.

Section 2 provides an overview of the approach. Sections 3 and

4 describe the process of mining and indexing the source code

of 116,609 open source projects. Sections 5 and 6 describe de-

tection of architectural tactics and implementation/technical con-

text in open source projects. Sections 7 and 8 describe the rank-

ing algorithms used to sort the results and the search process, re-

spectively. Section 9 represent the empirical experiments that were

conducted to evaluate the search engine. Section 10 describes the

related work, Section 11 explains the threats to validity of this

work and Section 12 summarizes the contributions of this paper

and discusses future work.

2. Overview of approach

The architecture of our search engine and its components are

depicted in Fig. 2 . The first component is an ultra-large-scale source

code repository , which contains over 116,609 open-source projects

extracted from various online software repositories. The second

component is our novel source code indexing technique, which rep-

resent projects and their source files in a form of index that is ef-

ficient for performing information retrieval techniques. The third

component is a tactic detector (Mehdi Mirakhorli, 2016; Mirakhorli

et al., 2012b) which is capable of detecting various architectural

tactics in the indexed code artifacts. The tactic detector relies on

information retrieval techniques, and its accuracy was previously

validated in a series of experiments (Mehdi Mirakhorli, 2016; Mi-

rakhorli et al., 2012b).

The fourth component is a dependency analyzer , which gener-

ates a dependency matrix for each tactical file in the source code

of a project. This matrix is then used by the fifth component –

Matching Technical Problem – to find whether the implementation

of a given tactic is related to a technical problem/context or not.

Technical context refers to a framework, technology, programming

language, or API which can be used to implement the tactic. In

other words, it is the technical problem in which the tactic needs

to be implemented.

The final component is a novel Ranking algorithm . It ranks the

source files in the search results based on (i) the semantic similar-

ity of a source file to a searched tactic (ii) the semantic similarity

http://design.se.rit.edu/ArchEngine/

Download English Version:

https://daneshyari.com/en/article/4956329

Download Persian Version:

https://daneshyari.com/article/4956329

Daneshyari.com

https://daneshyari.com/en/article/4956329
https://daneshyari.com/article/4956329
https://daneshyari.com

