
The Journal of Systems and Software 134 (2017) 120–137

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Understanding the interplay between the logical and structural

coupling of software classes

Nemitari Ajienka

∗, Andrea Capiluppi

Brunel University London, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, UK

a r t i c l e i n f o

Article history:

Received 17 March 2017

Revised 14 August 2017

Accepted 22 August 2017

Available online 24 August 2017

Keywords:

Object-oriented (OO)

Open-source software (OSS)

References

Structural coupling

Co-changed structural dependencies (CSD)

Coupled logical dependencies (CLD)

a b s t r a c t

During the lifetime of object-Oriented (OO) software systems, new classes are added to increase function-

ality, also increasing the inter-dependencies between classes. Logical coupling depicts the change depen-

dencies between classes, while structural coupling measures source code dependencies induced via the

system architecture. The relationship or dependency between logical and structural coupling have been

debated in the past, but no large study has confirmed yet their interplay.

In this study, we have analysed 79 open-source software projects of different sizes to investigate

the interplay between the two types of coupling. First, we quantified the overlapping or intersection

of structural and logical class dependencies. Second, we statistically computed the correlation between

the strengths of logical and structural dependencies. Third, we propose a simple technique to determine

the stability of OO software systems, by clustering the pairs of classes as “stable” or “unstable”, based on

their co-change pattern.

The results from our statistical analysis show that although there is no strong evidence of a linear cor-

relation between the strengths of the coupling types, there is substantial evidence to conclude that struc-

turally coupled class pairs usually include logical dependencies. However, not all co-changed class pairs

are also linked by structural dependencies. Finally, we identified that only a low proportion of structural

coupling shows excessive instability in the studied OSS projects.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Various software dependency measures have been proposed

over the years. Logical coupling is a measure of the degree to which

two or more classes change together or co-evolve, based on the

historical data of modifications; while structural coupling is a mea-

sure of the structural or source code dependencies between soft-

ware classes. For example, the number of method calls between

object-oriented (OO) software classes.

Establishing that two software entities co-evolve (i.e., they are

logically coupled) means that developers consider them as logically

related: for example, a change in one entity causes a change to be

made to another entity. This is also known as the cause −→ effect

rule.

On the other hand, structural coupling is the degree of in-

terdependence between software modules, and it indicates how

closely connected two modules are at the source code level.

Henderson-Sellers et al. (1996) state that strong coupling compli-

∗ Corresponding author.

E-mail addresses: nemitari.ajienka@brunel.ac.uk (N. Ajienka),

andrea.capiluppi@brunel.ac.uk (A. Capiluppi).

cates a system since a module is harder to understand, change,

or correct by itself, if it is highly interrelated with other mod-

ules. “Software complexity can be reduced by designing systems

with the weakest possible coupling between modules ” (Henderson-

Sellers et al., 1996) because “every time a supplier class changes, its

clients are also likely to change ” (Oliva and Gerosa, 2011).

In earlier studies, co-evolution of OO software classes has been

studied in relation to structural coupling (Oliva and Gerosa, 2011;

Yu, 2007; Geipel and Schweitzer, 2012; Oliva and Gerosa, 2015)

and software quality (Zimmermann et al., 2005; D’Ambros et al.,

2009a). Some of these studies showed that most of the struc-

turally coupled related entities in software projects do not co-

evolve, and the other way round (Oliva and Gerosa, 2011; Geipel

and Schweitzer, 2012; Oliva and Gerosa, 2015).

Fig. 1 illustrates what has been proposed in the past, and for

a smaller subset of classes: analysing the direction of the re-

lationship between co-evolution and structural coupling for 12

Linux kernel modules (Yu, 2007), Yu identified a linear and direc-

tional relationship between the co-evolution and structural cou-

pling. According to that work, structural coupling does not bring

about independent evolution: if software classes are evolved in-

dependently, there will be no correlation between structural cou-

http://dx.doi.org/10.1016/j.jss.2017.08.042

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.08.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.08.042&domain=pdf
mailto:nemitari.ajienka@brunel.ac.uk
mailto:andrea.capiluppi@brunel.ac.uk
http://dx.doi.org/10.1016/j.jss.2017.08.042

N. Ajienka, A. Capiluppi / The Journal of Systems and Software 134 (2017) 120–137 121

Fig. 1. The relationships among evolutionary dependencies, structural coupling and

co-evolution Yu (2007) of Linux Kernel Modules.

pling and co-evolution data. In addition, according to Oliva and

Gerosa (2015) , controlling coupling levels in practice is still chal-

lenging. One of the reasons is that the extent to which changes

propagate via structural dependencies is still not clear.

In this context and state of knowledge, this paper analyses a

sample of 79 OSS projects (written in Java) in order to add evi-

dence to the discussion on the causes of co-evolution of classes

with a large sample of a variety of software projects and to work

on the gaps identified in previous research (Yu, 2007; Oliva and

Gerosa, 2011).

This work is articulated as follows: in Section 2 we briefly ex-

plain the types of software dependencies (coupling) under study.

For the sake of replicability, in Section 3 we describe the steps

taken to carry out this study, with a working example using a

software project. Sections 4 and 5 highlight the findings of our

study, followed by a discussion on the importance of these find-

ings. In Section 6 we summarise the related work, and put ours

into context. Section 7 highlights the threats to validity and fi-

nally, our conclusions and areas for further research are presented

in Section 8 .

2. Object-oriented software dependencies

A dependency is a semantic relationship that indicates that a

client element may be affected by changes performed in a supplier

element (Oliva and Gerosa, 2011). In the next Subsections, we in-

troduce structural and logical dependencies and discuss how they

can be operationalised in the context of OO programming.

2.1. Logical coupling

According to Wiese et al., “change coupling is a phenomenon as-

sociated with recurrent co-changes found in the software evolution

or change history ” (Wiese et al., 2015b). Therefore, the logical cou-

pling of any two classes is based on their evolution history, and

is a measure of the observation that the two classes always co-

evolve or change together (Gall et al., 1998; 2003; D’Ambros et al.,

2009b; Wiese et al., 2015a). They are commonly treated as asso-

ciation rules (Zimmermann et al., 2005), which means that when

X 1 is changed, X 2 is also changed (Oliva and Gerosa, 2011). Fur-

thermore, X1 and X2 are called the antecedent (i.e., left-hand-side,

LHS) and the consequent (i.e., right-hand-side, RHS) of the rule, re-

spectively. For example, the rule {A, B} → C found in the sales data

of a supermarket indicates that a customer who buys A and B to-

gether, is also likely to buy C (Oliva and Gerosa, 2011).

Fig. 2. Association rule example for confidence and support metrics.

Two classes change at the same time when changes in one

class A are made in response to a change in another class B.

Kagdi et al. (2013) state that logical coupling captures the extent

to which software artifacts co-evolve and this information is de-

rived by analysing patterns, relationships and relevant information

of source code changes mined from multiple versions (of software

systems) in software repositories (e.g., Subversion and Bugzilla).

According to Lanza et al. (D’Ambros et al., 2006) it is use-

ful to study logical coupling because it can reveal depen-

dencies that are not revealed by analyzing only the source

code (Yu, 2007). This sort of dependencies are the most trou-

blesome and are prone to represent sources of bugs in software

projects. Zimmermann et al. (2003) represents logical dependency

using two metrics: support and confidence.

Operationalisation. Confidence and support are two well-known

metrics used in association rule learning: the support value counts

the number of revisions where two software artifacts (i.e., classes)

were changed together, in other words the probability of finding

both the antecedent and consequent in the set of revisions. For ex-

ample, in Fig. 2 , class A was modified in 3 transactions (where 3 is

the “Transaction Count” (Yu, 2007)). Out of these 3 transactions, 2

also included changes to the class C . Therefore, the support for the

logical dependency A → C will be 2. By its own nature, support is

a symmetric metric, so the A → C dependency also implies A ← C .

In this paper, the degree or strength of the logical dependency

between classes is evaluated using the confidence metric. By doing

so, we evaluated the significance of the association rules between

classes (Oliva and Gerosa, 2011), and across the lifespan of a soft-

ware project (i.e., taking all versions of the software system into

consideration).

As per its definition, the confidence 1 value of a dependency link

normalizes the support value by the total number of changes of

the causal class, or the antecedent of the association rule. Numeri-

cally, it is the ratio of the support count to transaction count: from

Fig. 2 , the confidence value for the association rule A → C (which

states that C depends on A) will have a high confidence value of

2/3 = 0.67. In contrast, the rule C → A (which states that A de-

pends on C) has a lower confidence value of 2/4 = 0.5. In other

words, the confidence is directional, and determines the strength

of the consequence of a given (directional) logical dependency.

Finally, logical coupling is directional, thus A → C (changes made

to class A resulted in changes in C) and C → A (changes in C caused

changes in A) will have different meanings. As a result, the confi-

dence for these two cause −→ effect rules can be different.

1 Also called the support ratio (Yu, 2007). In this study we only adopt the confi-

dence metric which is a measure of the degree to which a change in one class also

leads to a change in another class.

Download English Version:

https://daneshyari.com/en/article/4956339

Download Persian Version:

https://daneshyari.com/article/4956339

Daneshyari.com

https://daneshyari.com/en/article/4956339
https://daneshyari.com/article/4956339
https://daneshyari.com

