
The Journal of Systems and Software 134 (2017) 105–119

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Predicting change consistency in a clone group

Fanlong Zhang

a , 1 , Siau-cheng Khoo b , 2 , Xiaohong Su a , ∗

a School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
b School of Computing, National University of Singapore, Singapore

a r t i c l e i n f o

Article history:

Received 24 October 2016

Revised 21 August 2017

Accepted 29 August 2017

Available online 31 August 2017

Keywords:

Software reuse

Clone maintenance

Code clones

Consistency-requirement prediction

Bayesian network

Clone attributes

a b s t r a c t

Code cloning has been accepted as one of the general code reuse methods in software development,

thanks to the increasing demand in rapid software production. The introduction of clone groups and clone

genealogies enable software developers to be aware of the presence of and changes to clones as a collec-

tive group; they also allow developers to understand how clone groups evolve throughout software life

cycle. Due to similarity in codes within a clone group, a change in one piece of the code may require de-

velopers to make consistent change to other clones in the group. Failure in making such consistent change

to a clone group when necessary is commonly known as “clone consistency-defect”, which can adversely

impact software reusability.

In this work, we propose an approach to predict the need for making consistent change in clones

within a clone group at the time when changes have been made to one of its clones. We build a variant

of clone genealogies to collect all consistent/inconsistent changes to clone groups, and extract three at-

tribute sets from clone groups as input for predicting the need for consistent clone change. These three

attribute sets are code attributes, context attributes and evolution attributes respectively. Together, they

provide a holistic view about clone changes. We conduct experiments on four open source projects.

Our experiments show that our approach has reasonable precision and recall in predicting whether a

clone group requires (or is free of) consistent change. This holistic approach can aid developers in main-

taining clone changes, and avoid potential consistency-defect, which can improve software quality and

reusability.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A clone fragment (or simply called a clone) is generally re-

ferred to as a piece of code fragment that is “similar” to another

piece of code fragment; the notion of “similarity” between two

code fragments is typically defined at textual or syntactical level

(Koschke, 2007). “Copy-and-paste” operation is the most notice-

able way for physically reusing existing code from software, and

it can introduce abundant clone fragments. The presence of clones

in software has given rise to the question of whether clones can

adversely affect software quality, starting with Fowler et al. iden-

tifying some of the clones as “bad smell” (Fowler and Beck, 1999).

Clone research community has since debated on whether chang-

ing a set of clones inconsistently may cause software defects, and

whether the requirement for changing clones consistently may

∗ Corresponding author.

E-mail addresses: hitzhangfanlong@gmail.com (F. Zhang), khoosc@nus.edu.sg (S.-

c. Khoo), sxh@hit.edu.cn (X. Su).
1 Fanlong Zhang is the main author, and most of the work was done by him.
2 The major part of this work was done when the first author was on a PhD

internship at National University of Singapore.

lead to extra maintenance cost. If clone fragments in a group of

clones need to be changed consistently and developers forget to

do so, it may introduce defects at latter stage of software evolution

(Bettenburg et al., 2009; Juergens et al., 2009). On the other hand,

when consistent change within a clone group is not required, de-

velopers might unnecessarily spend time on verifying and attempt-

ing to maintain clone consistency, resulting in additional soft-

ware maintenance overhead (Aversano et al., 2007; Barbour et al.,

2011).

This work is an extension of our conference paper (Zhang et al.,

2016), which outlines a predictive model that warns software devel-

opers about the need to perform consistent change in clones, so as to

reduce clone maintainability cost in specificity, and improve soft-

ware maintainability in general. The extension here includes exper-

imental details as well as the inclusion of another software repos-

itory as experiment subject. Moreover, we extend the technique to

include prediction of clone changes which do NOT require consis-

tent change to the corresponding clone group. Thus, in this work,

we develop a more holistic approach which predicts whether consis-

tent change is needed for a clone group when one of clone fragments

in the group has been modified. Specifically, when a developer mod-

http://dx.doi.org/10.1016/j.jss.2017.08.045

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.08.045
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.08.045&domain=pdf
mailto:hitzhangfanlong@gmail.com
mailto:khoosc@nus.edu.sg
mailto:sxh@hit.edu.cn
http://dx.doi.org/10.1016/j.jss.2017.08.045

106 F. Zhang et al. / The Journal of Systems and Software 134 (2017) 105–119

ifies a piece of code which is a clone of other code, our developed

model will make its prediction, and offer two possible warnings to

developers:

1. When similar changes are indeed required for at least one

other clones in a clone group, we say that the clone group

satisfies the clone consistency-requirement . If this requirement

is predicted, our model will alarm the developer, and appro-

priate management action can be taken to avoid consistency-

defect. Although this leads to an increase in software mainte-

nance cost, it reduces the risk for clone-consistency-defect.

2. When none of the clones in the clone group requires consistent

change, we say that the clone group are consistency-free . If this

requirement is predicted, our model will inform the developer,

who can then change the clones freely with more confidence.

This in turns saves unnecessarily time on verifying consistency.

A related work done in this direction of clone consistency-

requirement prediction, which has inspired the current work, was

conducted by Wang et al. (2012, 2014) . In that work, they define a

code cloning operation as “consistency-maintenance-requirement”

if its generated code clones experience consistent changes in soft-

ware evolution history. They aim to automatically predict whether

a code cloning operation requires consistency-maintenance at the

time when a copy-and-paste operation is performed. They employ

Bayesian network machine learning technique (Friedman et al.,

1997) to develop and train a prediction model. Their predictor is

built with the following two categories of inputs: (1) the syntactic

characteristics of the code and its copy-and-paste counterpart and

(2) the physical context of the code and its copy-and-paste coun-

terpart. Tested on two open source projects and two large-scale

internal projects, they show that their predictor is able to recom-

mend developers to perform more than 50% of cloning operations

with a precision of at least 94% in these four subjects; in addition,

it is also able to avoid 37% to 72% of consistency-maintenance-

required code clones by warning developers on only 13% to 40%

code clones.

While Wang et al. aim to perform prediction at copy-and-paste

time, we perform prediction at almost any time in software life cy-

cle when a clone has been modified. Our technique can thus be

applied to existing clones in an established project, rather than

new clones formed (via copy-and-paste). To achieve that, we need

to be aware of the presence of clone group to which the mod-

ified code belongs. A clone group is a group of clones within a

piece of software which are known to be similar by some simi-

larity measures. In order to train a predictor, it is natural to inves-

tigate the evolution of clone groups during software evolution. To

this end, we adapt the notion of clone genealogy as nicely explained

by Kim et al. (2005) . A clone genealogy describes the evolution of

clones, and defines various clone patterns to describe how clones in

a group have been changed from the earlier version of the project.

We hypothesize that how a clone had been modified genealogically

wrt its clone group has an impact on the prediction if the clone

group requires consistent change in future . We thus build our pre-

dictor based on three categories of inputs, two of them have been

adapted from the work by Wang et al. (2012, 2014) , and the last

one captures the characteristics of clone genealogy, called evolution

attributes . This combination of three attributes provides a holis-

tic view on clone groups; the presence of evolution attributes en-

ables the predictor to be customized to individual software repos-

itory. We develop and construct, via WEKA (Hall et al., 2009), a

Bayesian network as the predictor, and experiment on its predic-

tive power on three software projects. Our experiments show that:

the predictor performs reasonably well with stable precision and

recall for both its prediction for clone consistency-requirement and

consistency-free, with precision ranges between 70% to 80%, and its

recall between 63% and 83%. In addition, each of the attribute sets

contributes positively in its own way to the predictive power, and

an absence of any of these attribute sets can adversely affect the

recall ability of the predictor.

The contributions of this paper are as follows:

1. We propose an approach to predict the need for consistent

change in a clone group arising from the occurrence of a clone

change.

2. We identify a new set of attribute for prediction based on infor-

mation related to clone genealogies. The results show that this

set of attributes has positive impact on the recall ability of the

predictor.

3. We demonstrate the feasibility of this prediction via an evalu-

ation on four open source projects. The results show that our

approach can predict consistent change in clone group effec-

tively with good precision and reasonable recall, and can help

improve software reusability through predictive clone mainte-

nance.

This paper is organized as follows: Section 2 discusses related

works.We give a brief introduction of code clone research and

defect prediction. Preliminaries is provided in Section 3 . There,

we explain code clone types, clone genealogy and clone changes.

And also give a example of consistent change from real world.

Section 4 details our approach to consistent clone change pre-

diction. We provide the detail of implementation in Section 5 .

Section 6 describes our evaluation through experimentation on

four projects. Section 7 discusses threats to validity. We conclude

and point to future work in Section 8 .

2. Related works

Ever since code clones have been identified as “bad smell”

(Fowler and Beck, 1999), there have been discussions over its

harmfulness to software. Proponents for clones being harmful

opine that their existence can lead to software defect and incur ad-

ditional maintenance effort. To this end, Lozano and Wermelinger,

studying the changeability of code clones, show that the mainte-

nance effort of changing a method may increase significantly when

the method has a clone (Lozano and Wermelinger, 2008). In ad-

dition, Barbour et al. investigate unsynchronized changes to clone

pairs which are re-synchronized at later stage – called late propa-

gation — and show that such pattern is related to a high number

of defects (Barbour et al., 2011). What’s more, Bakota et al. propose

a definition of “clone smell” to determine whether clones are re-

lated to software defects (Bakota et al., 2007). Those studies can

provide the evidence that code clones may hold certain character-

istics that are harmful to the enclosing software. However, oppo-

nents for clones being harmful have different research results. For

instance, Rahman et al. study the relationship between cloning and

defect proneness on open source projects, and find that clones may

be less defect prone than non-cloned code (Rahman et al., 2012).

This study appears diametrically opposite to the views on clone

harmfulness. Actually, the harmfulness of code clones tend to have

a strong subjectivity, which usually depends on the perspective of

individual researcher. Therefore, there are also others researchers

who adopt a neutral attitude towards clone harmfulness. For in-

stance, Kapser and Godfrey describe several clone patterns, discuss

their pros and cons, and conclude that there are situations where

clone seems to be a reasonable or even beneficial design option

(Kapser and Godfrey, 2006).

Regardless of whether the presence of code clones is deemed

harmful, “cloning” as a program development activity will persist

due to the manner in which general software developers some-

time develop codes (out of convenience). Clone analysis, espe-

cially on clone evolution and its change pattern, plays an impor-

tant role in understanding these clones. In this regard, Kim et al.

Download English Version:

https://daneshyari.com/en/article/4956340

Download Persian Version:

https://daneshyari.com/article/4956340

Daneshyari.com

https://daneshyari.com/en/article/4956340
https://daneshyari.com/article/4956340
https://daneshyari.com

