
ARTICLE IN PRESS 

JID: JSS [m5G; August 18, 2017;14:4 ] 

The Journal of Systems and Software 0 0 0 (2017) 1–14 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

A multi-level feedback approach for the class integration and test 

order problem 

Miao Zhang 

a , Shujuan Jiang 

a , ∗, Yanmei Zhang 

a , b , Xingya Wang 

a , Qiao Yu 

a 

a School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 
b Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, China 

a r t i c l e i n f o 

Article history: 

Received 27 February 2017 

Revised 1 August 2017 

Accepted 12 August 2017 

Available online xxx 

Keywords: 

Test order 

Test cost 

Stub minimization 

Feedback 

a b s t r a c t 

Class integration and test order (CITO) problem is to devise an optimal inter-class order which can mini- 

mize stubbing effort s. The existing approach for this problem, whether it is graph-based or search-based, 

usually wastes a significant amount of time and effort s in finding test orders, and sometimes may de- 

vise sub-optimal solutions. To overcome this limitation, we introduce a multi-level feedback approach 

to better solve the CITO problem. In this method, we use a multi-level feedback strategy to calculate 

test profit for each class, and according to test profit, propose a reward and punishment mechanism to 

assess the performance of class and set its test priority. Instead of breaking cycles or searching for opti- 

mum in the previous methods, our method integrates classes by their test priority, therefore significantly 

reduces the running time. The experiments are conducted on five benchmark programs and eight indus- 

trial programs, and the obtained results are compared with graph-based and search-based approaches. 

The results indicate that our approach can minimize the stubbing cost efficiently for most programs of 

all typical approaches compared in this work. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In the integration test of object-oriented (OO) software, the or- 

der to integrate and test classes is closely related to the stubbing 

efforts. Stubs need to be constructed for class A to emulate the 

behavior of another unavailable class B that is depended on by 

class A, during the test of A. In particular, when class A and class 

B are interdependent, constructing stubs for which class depends 

on the test order between class A and class B. Due to the com- 

plicated inter-class dependencies like this, the creation of stubs is 

inevitable, which is also expensive and error-prone ( Labiche et al., 

20 0 0 ). Therefore, to construct fewer stubs at lower stubbing cost, 

classes should be integrated and tested by an optimal order. 

In the literature, different kinds of approaches were proposed 

to devise optimal integration test orders. Graph-based algorithms 

( Kung et al., 1995; Tai and Daniels, 1997; Le Traon et al., 20 0 0; 

Briand et al., 2001 ) generally construct an Object Relation Diagram 

(ORD) to identify Strongly Connected Components (SCCs), break cy- 

cles in non-trivial SCCs and test classes by reverse topological or- 

dering of classes considering their dependencies. Graph-based al- 

gorithms are easy to understand, but they present two limitations: 

∗ Corresponding author. 

E-mail address: shjjiang@cumt.edu.cn (S. Jiang). 

(1) although they can reduce the number of stubs, they tend to 

construct more complex stubs in many cases ( Briand et al., 2002a ); 

(2) recursively identifying SCCs and breaking cycles add more time 

and effort s, especially when the systems cont ain hundreds of thou- 

sands, or even millions of cycles. For that reason, search-based al- 

gorithms were proposed in Briand et al. (2002b) , Borner and Paech 

(2009) , Wang et al. (2010) and Steindl and Mottok (2012) . This kind 

of approaches randomly generates initial individuals (class inte- 

gration test orders), produces new offspring by using some evo- 

lution operators, and selects more adequate solution (the integra- 

tion test order with minimum stubbing complexity) by calculat- 

ing and comparing their fitness. Search-based algorithms are flex- 

ible because they no longer break cycles, but the results are not 

deterministic and sometimes they waste time on searching when 

trapped into local optimum particularly for large-scale programs. 

As the aforementioned approaches take too much time to gen- 

erate integration test orders, we introduce an efficient method 

named MLFCITO (Multi-Level Feedback Approach for the Class In- 

tegration and Test Order). This method can reduce the stubbing 

cost at less time cost, and provide a time-saving test order for 

the integration test. Considering the time cost is mainly caused by 

breaking cycles in graph-based algorithms and searching for opti- 

mum in search-based algorithms, MLFCITO drops these two mea- 

sures and leverages an incremental strategy that classes are inte- 

grated according to their test priority. MLFCITO initially sets test 

http://dx.doi.org/10.1016/j.jss.2017.08.026 

0164-1212/© 2017 Elsevier Inc. All rights reserved. 

Please cite this article as: M. Zhang et al., A multi-level feedback approach for the class integration and test order problem, The Journal 

of Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.08.026 

http://dx.doi.org/10.1016/j.jss.2017.08.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:shjjiang@cumt.edu.cn
http://dx.doi.org/10.1016/j.jss.2017.08.026
http://dx.doi.org/10.1016/j.jss.2017.08.026


2 M. Zhang et al. / The Journal of Systems and Software 0 0 0 (2017) 1–14 

ARTICLE IN PRESS 

JID: JSS [m5G; August 18, 2017;14:4 ] 

priority for each class by reward and punishment mechanism, and 

dynamically adjusts priority for untested classes based on their test 

profit. This test profit is calculated according to the feedback in- 

formation of inter-class dependencies between the untested and 

tested classes. To decrease the stubbing cost, test priority for each 

class is set and adjusted according to its stubbing complexity. To 

save time for the integration test, classes in the same test prior- 

ity can be integrated and tested together, instead of stepwise. In 

fact, testers can sort these classes again to meet their practical de- 

mands, without increasing stubbing cost. e.g., they can integrate 

multiple classes at once; or they can test the high demand classes 

at first. 

We perform experiments on five benchmark systems and eight 

large real systems with varying complexities to evaluate MLFCITO. 

The results are very encouraging as the new proposed approach 

can clearly reduce the stubbing cost and execution time when 

compared to other graph-based algorithms and search-based algo- 

rithms. 

The contributions of this work are as follows: 

• We propose a novel, multi-level feedback approach named 

MLFCITO for the CITO problem. To our best knowledge, the 

strategy is entirely different from the previous graph-based and 

search-based approaches. 
• We evaluate the effectiveness and efficiency of MLFCITO on 

benchmark programs and industrial programs, and compare it 

with the previous studies on a new aspect of stubs distribu- 

tion. The results have confirmed the better performance of the 

proposed method. 
• We provide a more flexible solution for the integration test. 

Based on the test order generated by MLFCITO, testers can meet 

their practical demands at a lower stubbing cost, especially in 

some cases, they can perform a parallel integration test. 

The paper is organized as follows. Section 2 presents a re- 

view of works related to the class integration and test order 

problem. Section 3 introduces MLFCITO. Section 4 represents the 

empirical evaluation conducted, its results and analysis. Finally, 

Section 5 concludes this work and discusses future works. 

2. Related work 

CITO problem can be defined as to devise an optimal order for 

integrating and testing the classes ( Abdurazik and Offutt, 2006 ). 

Such order means that the number of created stubs and the stub- 

bing complexity are lowered to the possible minimum. So works 

that address CITO problem generally attempt to minimize the 

number of stubs, or to reduce the stubbing complexity ( Wang et al., 

2011 ), which can be characterized by two different techniques: 

graph-based and search-based. In this section, an overview of these 

works is presented. 

The graph-based approach proposed by Kung et al. (1995) was 

the first one to address this problem. They broke cycles by remov- 

ing association edges in cycles, and then produced test order by 

topological sorting for the acyclic digraph. When there was more 

than one association edge that could be removed for cycle break- 

ing, they randomly selected any one. However, removing different 

association edges would construct varying numbers of stubs, and 

sometimes randomly removing an association might lead to higher 

stubbing cost. To create fewer stubs, the association edges that 

were involved in more cycles would be removed. Therefore, re- 

searchers ( Tai and Daniels, 1997; Le Traon et al., 20 0 0; Briand et al., 

2001 ) used weights to measure the relation between edges (or ver- 

tices) and number of cycles, and proposed diverse approaches to 

break cycles by removing candidate edges or vertices according to 

their weights. 

Tai and Daniels (1997) first integrated classes according to 

their major-level numbers which were determined only based on 

strongly connected relations (such as, inheritances and aggrega- 

tions). Then for the classes at the same major level, they itera- 

tively removed the association edge with the highest weight un- 

til no cycles existed, and tested classes according to minor-level 

numbers which were determined based on weakly connected rela- 

tions such as associations. Every association was assigned a weight 

based on related incoming and outgoing dependencies to approxi- 

mately measure the number of cycles it involved in. Le Traon et al. 

(20 0 0) identified frond edges (an edge starting from vertices to 

their ancestors) to assign weights for vertices, and removed all in- 

coming edges of the vertex with the highest weight to break cy- 

cles. Compared with other approaches, this approach may remove 

strongly connected relations leading to the construction of com- 

plicated stubs. Briand et al. (2001) removed only association edge 

with the highest weight, and improved Tai and Daniels’ approach 

in weight computation. They took the product of incoming depen- 

dencies and outgoing dependencies as edges’ weights to measure 

the number of involved cycles, which was more precise than Tai 

and Daniels’ weight computation. 

The above three approaches are non-deterministic. For Le 

Traon’s approach ( Le Traon et al., 20 0 0 ), vertices’ weights depend 

on the number of related frond edges, and such edges are deter- 

mined by the traversing order of vertices. Each time the results 

obtained would be uncertain since whether an edge is removed 

depended on how the ORD is traversed. Other two approaches 

perform a random selection when there are two or more candi- 

date associations with the same weights, which results in non- 

deterministic test orders. 

Hewett and Kijsanayothin (2009) proposed a deterministic ap- 

proach which incrementally selected the appropriate classes for 

the integration test. Similar to ours, this approach requires neither 

the identification of SCCs nor the breaking of cycles. However, the 

approach of Hewett and Kijsanayothin (2009) has three main dif- 

ferences from ours. First, Hewett et al.’s method aims at reducing 

the number of stubs while our purpose is to minimize the stub- 

bing complexity. Second, in Hewett et al.’s method, classes and de- 

pendencies are treated as vertices and edges in a Test Dependency 

Graph (TDG), CITO problem is simplified to the problem of sorting 

the vertices in TDG. Compared with us, they are less concerned 

with the information of systems, and neglect to differentiate types 

of dependencies. Third, in Hewett et al.’s method, the number of 

stubs required by class A is approximately measured by vertex A’s 

outdegree. While we measure the stubbing complexity based on 

the attribute coupling and method coupling. 

The objective of the above approaches is to minimize the num- 

ber of test stubs to be constructed, but sometimes they may con- 

struct extra complicated stubs, because actually stubbing cost is 

also affected by other factors, such as number of attributes ac- 

cessed, and number of methods invoked ( Briand et al., 2002b ). 

Hence, Briand et al. (2002a ) measured stubbing complexity of de- 

pendencies by the numbers of attribute coupling and method cou- 

pling. Abdurazik and Offutt (2006) introduced nine kinds of cou- 

plings and considered more information in measuring the stubbing 

effort s, including the number of parameters, the number of return 

value types and the number of variables, which improved the ac- 

curacy but increased the complexity of the algorithm. Jiang et al. 

(2012) reassigned the weights for the four coupling information 

to reduce algorithm’s complexity while guaranteeing the accuracy. 

Indeed, the coupling information introduced by these three ap- 

proaches is the same, since attribute coupling proposed by Briand 

et al. includes the return value type coupling and parameter cou- 

pling. Considering that Briand’s coupling measures are more pop- 

ular, the approach proposed in this paper adopts Briand’s strategy 

in measuring stubbing cost. 

Please cite this article as: M. Zhang et al., A multi-level feedback approach for the class integration and test order problem, The Journal 

of Systems and Software (2017), http://dx.doi.org/10.1016/j.jss.2017.08.026 

http://dx.doi.org/10.1016/j.jss.2017.08.026


Download English Version:

https://daneshyari.com/en/article/4956361

Download Persian Version:

https://daneshyari.com/article/4956361

Daneshyari.com

https://daneshyari.com/en/article/4956361
https://daneshyari.com/article/4956361
https://daneshyari.com

