
 

Accepted Manuscript

Preface: Special Issue on Software Verification and Testing

Mercedes G. Merayo, Gwen Salaün

PII: S0164-1212(17)30157-7
DOI: 10.1016/j.jss.2017.07.025
Reference: JSS 10008

To appear in: The Journal of Systems & Software

Please cite this article as: Mercedes G. Merayo, Gwen Salaün, Preface: Special Issue on Software
Verification and Testing, The Journal of Systems & Software (2017), doi: 10.1016/j.jss.2017.07.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2017.07.025
http://dx.doi.org/10.1016/j.jss.2017.07.025


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Preface: Special Issue on Software Verification
and Testing

Software is now everywhere and guiding every part of our daily life (Web appli-
cations, smartphones, video games, cars, information systems, etc.). Designing
and developing software systems has always been a tedious and error-prone task,
and the ever increasing system complexity is making matters even worse. Al-
though we are still far from providing widespread techniques and tools avoiding
the existence of bugs in a system under development, we know how to auto-
matically chase and find bugs that would be very difficult, if not impossible, to
detect manually.

Software Verification and Testing is a research discipline of software engi-
neering aiming at augmenting the quality of software by looking for bugs and
checking that the developed software satisfies the expected requirements (func-
tional and non-functional). There are several techniques for debugging and
obtaining high quality software such as model checking, model-based testing,
theorem proving, symbolic execution, run-time verification, fault diagnosis, or
static analysis.

This Special Issue (SI) is dedicated to Software Verification and Testing
(SVT) and more precisely aims at contributing to the challenge of improving
the usability of formal methods in software engineering. This SI is a follow-up
of the SVT track that we organized at the 31th ACM Symposium on Applied
Computing, held in Pisa, Italy on April 3-8, 2016. The track received 58 full
paper submissions. After a careful reviewing process, the international Program
Committee decided to select 13 papers for presentation during the symposium
and inclusion in the SAC’16 proceedings. From these 13 papers, the five best
papers were selected and invited for an extended version to this special issue.
We also received new submissions since an open call circulated for this SI. All
the submissions went through a rigorous peer review process; four papers were
finally accepted and are included in this special issue. These papers provide key
insights on different formal verification and testing approaches.

The first paper, “Implementation relations and probabilistic schedulers in
the distributed test architecture” by Hierons and Nuñez, presents a complete
framework to formally test systems with distributed ports where some choices
are probabilistically quantified while other choices are non-deterministic. They
define different relations that state what it means for a system to be a valid
implementation of a specification. These relations are defined using probabilistic
schedulers, which resolve all the possible non-determinism, and can be used to
compare purely probabilistic systems.

The second paper “A method to localize faults in concurrent C programs” by
Alves, Cordeiro and Filho, describes a new approach to localize faults in concur-
rent programs, which is based on bounded model checking and sequentialization
techniques. The main idea is to reproduce a faulty behavior in a sequential
version of a concurrent program. Faulty lines in a program are identified by
analyzing counterexamples generated by a model checker and by searching for

1



Download English Version:

https://daneshyari.com/en/article/4956392

Download Persian Version:

https://daneshyari.com/article/4956392

Daneshyari.com

https://daneshyari.com/en/article/4956392
https://daneshyari.com/article/4956392
https://daneshyari.com

