
ARTICLE IN PRESS

JID: JSS [m5G; July 7, 2016;19:34]

The Journal of Systems and Software 0 0 0 (2016) 1–17

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Construction and utilization of problem-solving knowledge in open

source software environments

Hyung-Min Koo

∗, In-Young Ko

School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehakro, Yuseong-gu, Daejeon, 305-701, Republic of Korea

a r t i c l e i n f o

Article history:

Received 15 June 2015

Revised 1 February 2016

Accepted 23 June 2016

Available online xxx

Keywords:

Software reuse

Open source software

Knowledge-based software reuse

Bayesian network

a b s t r a c t

Open Source Software (OSS) has become an important environment where developers can share reusable

software assets in a collaborative manner. Although developers can find useful software assets to reuse

in the OSS environment, they may face difficulties in finding solutions to problems that occur while in-

tegrating the assets with their own software. In OSS, sharing the experiences of solving similar problems

among developers usually plays an important role in reducing problem-solving effort s. We analyzed how

developers interact with each other to solve problems in OSS, and found that there is a common pattern

of exchanging information about symptoms and causes of a problem. In particular, we found that many

problems involve multiple symptoms and causes and it is critical to identify those symptoms and causes

early to solve the problems more efficiently. We developed a Bayesian network based approach to semi-

automatically construct a knowledge base for dealing with problems, and to recommend potential causes

of a problem based on multiple symptoms reported in OSS. Our experiments showed that the approach

is effective to recommend the core causes of a problem, and contributes to solving the problem in an

efficient manner.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Software reuse is the process of creating software systems from

existing software assets rather than building them from scratch

(Ali et al., 1999; Kruger, 1992). The main goal of software reuse is

to improve software productivity, quality, maintainability, and re-

liability while reducing the cost, time, and complexity of software

development (Boehm, 1999 ; Rothenberger et al., 2003). Reusable

software assets can be classified into two types: tangible software

assets and intangible software assets. Tangible software assets are

software artifacts that are explicitly documented in forms such

as source code, software components, and requirement specifica-

tions. Intangible software assets are implicit and tacit knowledge

that are not documented, such as skills and experiences (Lee, 1993 ;

McCarey et al., 2008 ; Rus and Lindvall, 2002). As the complexity

of software is increased, reuse of intangible software assets is es-

sential to reduce duplicated effort s of developing software, and to

solve problems that occur while reusing tangible software assets in

an effective manner.

Although the importance of utilizing the knowledge of soft-

ware reuse has been stressed for a long time, there has not been

a great deal of study done for constructing and reusing problem-

∗ Corresponding author.

E-mail addresses: hmkoo@kaist.ac.kr (H.-M. Koo), iko@kaist.ac.kr (I.-Y. Ko).

solving knowledge in software reuse (Frakes, 1994 ; Haeiger et al.,

2006). Software reuse environments such as SmartAPI, the NASA

Reuse portal, and Software Reuse System (SRS) (Gerard et al., 2007 ;

Eberhart and Agarwal, 2004 ; Antunes et al., 2007) provide devel-

opers with a Web-based reuse environment that facilitates easy

and efficient access to software assets. However, they focus on

managing and reusing tangible software assets.

Recently, Open Source Software (OSS) has become an important

software reuse environment in various software development do-

mains (Godfrey, 20 0 0). OSS environments such as Sourceforge.net 1

and GitHub 2 enable developers to share and reuse software assets

in a collaborative manner (Haefliger et al., 2008 ; Lakhani and Hip-

pel, 2003). Although developers can find useful software assets to

reuse from OSS, they often face problems when they try to inte-

grate the software assets with their own software project. Devel-

opers usually use a discussion forum in an OSS environment to

solve the problems by utilizing other developers’ experience and

knowledge of solving problems (Georg et al., 2005). However, the

forum messages are written in a textual form, and it is usually dif-

ficult for developers to find appropriate messages that are helpful

to solve their problems.

1 http://www.sourceforge.net .
2 https://www.github.com .

http://dx.doi.org/10.1016/j.jss.2016.06.062

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: H.-M. Koo, I.-Y. Ko, Construction and utilization of problem-solving knowledge in open source software envi-

ronments, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.0 6.0 62

http://dx.doi.org/10.1016/j.jss.2016.06.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:hmkoo@kaist.ac.kr
mailto:iko@kaist.ac.kr
http://www.sourceforge.net
https://www.github.com
http://dx.doi.org/10.1016/j.jss.2016.06.062
http://dx.doi.org/10.1016/j.jss.2016.06.062

2 H.-M. Koo, I.-Y. Ko / The Journal of Systems and Software 0 0 0 (2016) 1–17

ARTICLE IN PRESS

JID: JSS [m5G; July 7, 2016;19:34]

In our previous study, we investigated how developers interact

with each other to solve a problem in OSS. Developers who face

a problem in reusing a software asset usually post descriptions on

a discussion forum about specific symptoms that they experienced.

Other developers who experienced similar symptoms then join and

post descriptions about additional symptoms on the discussion fo-

rum. After some period of time, possible causes of the symptoms

are discussed among developers. Finally, solutions to the problem

start appearing in the discussion forum. We defined these interac-

tions between developers as an interaction pattern for solving prob-

lems in OSS (Koo and Ko, 2015).

In this paper, we propose an approach to construction and

utilization of problem-solving knowledge in OSS. In our previ-

ous work, we analyzed and considered only the direct correla-

tions between symptoms and causes of problems in OSS (Koo and

Ko, 2015). However, we found that often there are multiple symp-

toms and causes that are related to a problem. We speculated that

a problem that has multiple symptoms and causes is more diffi-

cult to solve, and requires more interactions between developers.

To deal with these multiple symptoms and causes in an effective

way, it is necessary to consider relative and probabilistic relation-

ships based on co-occurrences of various combinations of symp-

toms and causes. A Bayesian Network (BN) is widely used for rep-

resenting relative and probabilistic relationships between entities

(Heckerman et al., 1995 ; Starr and Shi, 2004). Therefore, we ap-

plied a BN for constructing a knowledge base and recommend-

ing potential causes of problems in OSS. We have developed an

approach of automatically building a BN from ontologies that are

used to represent essential symptoms and causes in a software do-

main. We also defined a metric to calculate conditional probabili-

ties of each cause or symptom in the BN.

Using the forum data sets that are stored in the ‘User Interfaces’

and ‘Algorithms’ categories from Sourceforge.net, we performed

experiments to prove the effectiveness of using a BN to con-

struct problem-solving knowledge, and to find appropriate causes

of problems in OSS. The results of the experiments show that the

precision of finding potential causes of problems can be improved

by up to 10% by using the BN to consider multiple symptoms and

causes of the problems. In addition, we could reduce the time

spent to solve problems in OSS by up to 40% by recommending

potential causes of the problems early in the problem-solving pro-

cess.

We explain related work on utilizing knowledge for software

reuse in Section 2 . In Section 3 , we summarize the results of our

previous study to find interaction patterns of developers in solving

problems in OSS. We explain the approach of creating an ontology-

based BN and the metric to calculate conditional probabilities for

the BN in Section 4 . The results of the experiments that we con-

ducted to prove the effectiveness of using the ontology-based BN

for recommending the causes of problems in OSS are described

and analyzed in Section 5 . Finally, we discuss the contributions of

our work and future research directions in Section 6 .

2. Related work

BORE, Conceptually Oriented Design Environment (CODE), and

NASA Experience Factory are the systems that were developed to

enable developers to utilize knowledge about the project manage-

ment such as tools, design, people, process, cost, and development

methods for their software developments (Basii et al., 1992; Hen-

niger, 1997; Skuce, 1995). These works focus on building and man-

aging general knowledge for effective management of software de-

velopment projects rather than constructing and utilizing problem-

solving knowledge in software reuse.

A wide body of research has been carried out on building

knowledge bases about software reuse and facilitating knowledge

for developers in software reuse activities. Source code ECOsystem

Linked Data (SeCold) provides a software reuse environment where

developers can find necessary source code with various granular-

ity (project, method blocks, and lines of source code) along with

relevant knowledge to effectively reuse them (Iman et al., 2012).

SeCold has an ontological model for extracting source code data

and representing the semantic inter-linking between them by us-

ing Linked Data, 3 a Web-based infrastructure for connecting and

sharing Semantic Web data. By using this source code related

knowledge, SeCold provides developers with a set of capabilities

to find information about implementing source code and handling

errors and bugs. However, in SeCold, developers must interlink

their source code with the concepts in ontologies for construct-

ing a knowledge base, which is usually a difficult task, especially

when the size of the source code is large. In addition, the utiliza-

tion of the knowledge is focused mostly on checking the similarity

between source-code blocks. In addition, the scope of the recom-

mended knowledge is restricted to fixing bugs or errors in source

code.

Linked Data Driven Software Development (LD2SD) provides a

development environment that allows developers to search open

source code and relevant software artifacts from a knowledge base

built on Linked Data (Aftab and Hausenblas, 2013). LD2SD provides

an Integrated Development Environment (IDE) that is connected to

the knowledge base. All source code and their execution results in

the IDE are stored and managed in the knowledge base. Developers

can reuse not only the source code but also the execution results

that other developers already experienced by using their own IDE.

This work differs from ours in terms of the scope of knowledge

and the way of constructing the knowledge base. The main ap-

proach used in this work for construction of knowledge is to make

interlinks between Linked Data and existing software artifacts such

as bug reports, version information, and source code. We focus on

extracting problem-solving knowledge from the interactions (mes-

sage exchanges) between developers.

Evolutionary Ontology (EvoOnt) is a repository system that

stores information about errors and bugs that are related to source

code (Kiefer et al., 2007). Errors and bugs that are posted in OSS

are collected and stored by using ontologies. EvoOnt provides three

ontologies: the software ontology, version ontology, and bug on-

tology. Based on these ontologies, the experiences of solving the

errors and bugs are collected and stored by using the impre-

cise SPARQL (iSPARQL) 4 search engine. EvoOnt continuously detects

bad-smell code, and orphan methods that cause errors and bugs,

and finds their fixes to build the knowledge base. However, in this

work, the collection and evolution of knowledge is done at the

source code level rather than general problem-solving knowledge

from actual interactions between developers.

KnowBench is a knowledge management system that man-

ages the essential knowledge for handling errors and problems in

reusing software components that developers experienced in past

projects (Dimitris and Gregoris, 2011). The main goal of Know-

Bench is to provide an efficient way of dealing with the errors

that developers face at the development time by allowing them to

search relevant knowledge or documents. However, KnowBench fo-

cuses on building a static knowledge base at the source code level,

and the main source of knowledge is the set of documents from

past software development projects.

General Architecture for Text Engineering (GATE) defines a pro-

cess for constructing a knowledge base by extracting data from

software-related documents such as source code and user manu-

3 http://www.w3.org/standards/semanticweb/data .
4 https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/completed-projects/semweb/

isparql/ .

Please cite this article as: H.-M. Koo, I.-Y. Ko, Construction and utilization of problem-solving knowledge in open source software envi-

ronments, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.0 6.0 62

http://www.w3.org/standards/semanticweb/data
https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/completed-projects/semweb/isparql/
http://dx.doi.org/10.1016/j.jss.2016.06.062

Download English Version:

https://daneshyari.com/en/article/4956422

Download Persian Version:

https://daneshyari.com/article/4956422

Daneshyari.com

https://daneshyari.com/en/article/4956422
https://daneshyari.com/article/4956422
https://daneshyari.com

