
ARTICLE IN PRESS

JID: JSS [m5G; August 10, 2016;10:38]

The Journal of Systems and Software 0 0 0 (2016) 1–23

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Xtraitj : Traits for the Java platform

�

Lorenzo Bettini a , ∗, Ferruccio Damiani b

a Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze, Italy
b Dipartimento di Informatica, Università di Torino, Italy

a r t i c l e i n f o

Article history:

Received 17 June 2015

Revised 6 July 2016

Accepted 24 July 2016

Available online xxx

Keywords:

Java

Trait

IDE

Implementation

Eclipse

a b s t r a c t

Traits were proposed as a mechanism for fine-grained code reuse to overcome many limitations of class-

based inheritance. A trait is a set of methods that is independent from any class hierarchy and can be

flexibly used to build other traits or classes by means of a suite of composition operations. In this paper

we present the new version of Xtraitj , a trait-based programming language that features complete com-

patibility and interoperability with the Java platform. Xtraitj is implemented in Xtext and Xbase , and it

provides a full Eclipse IDE that supports an incremental adoption of traits in existing Java projects. The

new version of Xtraitj allows traits to be accessed from any Java project or library, even if the original

Xtraitj source code is not available, since traits can be accessed in their byte-code format. This allows

developers to create Xtraitj libraries that can be provided in their binary only format. We detail the

technique we used to achieve such an implementation; this technique can be reused in other languages

implemented in Xtext for the Java platform. We formalize our traits by means of flattening semantics

and we provide some performance benchmarks that show that the runtime overhead introduced by our

traits is acceptable.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problems of class-based inheritance and in particular its

poor support for code reuse were emphasized by Schärli et al.

(2003) (see also Ducasse et al. (2006)): both single and multiple

class-based inheritance are often inappropriate as a reuse mech-

anism. The main reason is that classes play two competing roles:

a class is both a generator of instances and a unit of reuse . To

accomplish the first role, a class must provide a complete set of

basic features, and to accomplish the second role it must provide a

minimal set of sensibly reusable features. Schärli et al. (2003) also

observed that mixins (Hendler, 1986; Bracha and Cook, 1990; Lim-

berghen and Mens, 1996; Flatt et al., 1998; Bettini et al., 2003a;

Ancona et al., 2003), which are subclasses parametrized over their

superclasses, are not necessarily appropriate for composing units

of reuse. Indeed, mixin composition is linear, because it is still

based on the ordinary single inheritance operator—note that the

� This work has been partially supported by: project HyVar (www.hyvar-project.

eu), which has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No. 644298; by ICT COST Ac-

tion IC1402 ARVI (www.costarvi. eu); and by Ateneo/CSP D16D150 0 0360 0 05 project

RunVar.
∗ Corresponding author. Fax: +39 055 2751525.

E-mail addresses: lorenzo.bettini@unifi.it (L. Bettini), ferruccio.damiani@unito.it

(F. Damiani).

formulation of mixins given by Bracha in Jigsaw (Bracha, 1992)

does not suffer from this problem, but most of the subsequent

formulations of the mixin construct do.

For the above reasons, traits were proposed by Schärli et al.

(2003) as pure units of behavior, aiming to support fine-grained

reuse. The goal of traits is to provide a flexible solution to the

problems of class-based inheritance with respect to code reuse,

avoiding the two traditional competing roles of classes as ob-

ject generators and units of code reuse mentioned above (see

also Ducasse et al., 2006; Murphy-Hill et al., 2005; Cassou et al.,

2009 for discussions and examples). A trait provides a set of meth-

ods that is completely independent of any class hierarchy. The

rationale is that the common methods of a set of classes can be

factored into a trait. The distinguishing features of traits are that:

• Traits can be composed in an arbitrary order (leading to a class

or another trait); and

• The resulting composite unit has complete control over the

conflicts that may arise in the composition, and must solve

these conflicts explicitly.

These features make traits simpler and more flexible than

mixins —the “trait” construct incorporated in Scala (Odersky, 2007)

is indeed a form of mixin. The original proposal of traits (Schärli

et al., 2003; Ducasse et al., 2006) was given in Squeak/Smalltalk ,

that is, in a dynamically typed setting. Various formulations of

traits in a Java -like statically typed setting can be found in the

http://dx.doi.org/10.1016/j.jss.2016.07.035

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: L. Bettini, F. Damiani, Xtraitj : Traits for the Java platform, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.07.035

http://dx.doi.org/10.1016/j.jss.2016.07.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://www.hyvar-project.eu
mailto:lorenzo.bettini@unifi.it
mailto:ferruccio.damiani@unito.it
http://dx.doi.org/10.1016/j.jss.2016.07.035
http://dx.doi.org/10.1016/j.jss.2016.07.035

2 L. Bettini, F. Damiani / The Journal of Systems and Software 0 0 0 (2016) 1–23

ARTICLE IN PRESS

JID: JSS [m5G; August 10, 2016;10:38]

literature (see, e.g., Quitslund, 2004; Smith and Drossopoulou,

2005; Nierstrasz et al., 2006; Bono et al., 2007; Reppy and Turon,

20 07; Bono et al., 20 08; Liquori and Spiwack, 20 08; Bettini et al.,

2013d; 2013b).

In most of the above proposals, trait composition and class-

based inheritance live together. In some formulations (Smith and

Drossopoulou, 2005; Nierstrasz et al., 2006; Liquori and Spiwack,

2008) trait names are types, just like class names and interface

names in Java —this choice limits the reuse potential of traits, since

the role of unit of reuse and the role of type are competing (see,

e.g., Snyder (1986) and Cook et al. (1990)). This does not happen

in pure trait-based programming languages (Bono et al., 20 07, 20 08;

Bettini et al., 2013d), where:

• Class-based inheritance is not present, and

• Traits are not types.

The rationale for these choices is that pure trait-based pro-

gramming languages aim to maximize the opportunity for reuse:

class-based inheritance is ruled out in order to prevent program-

mers from writing code that might be difficult to reuse, and traits

are not types to rule out the interplay between the competing

roles of unit of reuse and type that would restrict traits’ flexibility.

These design choices do not reduce the expressivity and usability

of the language. In fact, even though class-based inheritance

is not present, type subsumption is still supported by Java -like

interfaces. Moreover, not using trait names as types in the source

program does not prevent us from analyzing each trait definition

in isolation from the classes and the traits that use it. This way,

it is not necessary to reanalyze a trait whenever it is used by a

different class.

In previous work (Bettini and Damiani, 2013; 2014) we in-

troduced the prototype implementation of Xtraitj , a language

for pure trait-based programming interoperable with the Java

type system without reducing the flexibility of traits (Bettini and

Damiani, 2013), and extended Xtraitj and its implementation with

full support for Java generics and Java annotations (Bettini and

Damiani, 2014). Such extensions allowed us to implement generic

traits, classes and generic trait methods. Xtraitj programs are

compiled into Java programs, which can then be compiled with a

standard Java compiler.

Xtraitj is implemented with Xtext (2015), Bettini (2013) . Xtext

is a language workbench (such as MPS (Voelter, 2011) and Spoofax

(Kats and Visser, 2010)): it takes as input a grammar definition

and it generates a parser, an abstract syntax tree, and a full

Eclipse-based IDE. Thus, by using Xtext we implement not only

the compiler of Xtraitj , but also its Eclipse integration. Further-

more, for the syntax of our trait method bodies, we use Xbase

(Efftinge et al., 2012), a reusable Java -like expression language that

facilitates full interoperability with the Java type system. Since

Xtraitj code can coexist with Java code, single parts of a project

can be refactored to use traits, without requiring a complete

rewrite of the whole code-base. This allows incremental adoption

of traits in existing Java projects.

In spite of the nice integration of Xtraitj with Eclipse and Java ,

the implementation of Xtraitj (Bettini and Damiani, 2014) still

suffered from a crucial issue that would prevent the adoption of

Xtraitj in a production environment: all the Xtraitj sources have

to be available in a project that uses Xtraitj . This leads to the

following drawbacks:

• All Xtraitj source files have to be loaded in a Xtraitj program.

While this does not prevent us from type checking traits in iso-

lation, it still forces us to compile Xtraitj sources that are pro-

vided as libraries.
• Connected to the previous issue, trait libraries cannot be pro-

vided in a binary only format.

These are in contrast with the very concept of library. In

particular, library artifacts should not be recompiled when used in

a program. In industry, shipping libraries with sources might not

be acceptable.

Contributions of the paper. We present a new version of Xtraitj

that addresses the above limitations. We rewrote most of the

implementation of Xtraitj in order to achieve full integration of

traits with the Java platform, including accessibility of traits in

byte-code only format. This removes the above limitations, allows

trait libraries to be provided in a binary only format, and makes

Xtraitj effectively usable in production. Besides the increased

usability of Xtraitj , we believe that the technique that we use

to achieve full integration with Java could be easily re-used in

other languages that aim at such integration, using Xtext / Xbase .

To the best of our knowledge, Xtraitj is the first DSL with non

trivial linguistic features that uses such technique. 1 Since Xtext is

the de-facto standard for implementing languages in the Eclipse

eco-system, and since Xbase is a powerful framework for imple-

menting languages interoperable with Java , we think that our

implementation could be useful to Xtext / Xbase users. Further-

more, we formally specify the semantics of Xtraitj by means of a

flattening translation (Ducasse et al., 2006; Nierstrasz et al., 2006).

The flattening translation specifies that the semantics of a class

that uses traits is equivalent to the semantics of the class obtained

by inlining into the body of the class the methods provided by

the traits that it uses. Finally, we evaluate Xtraitj in terms of

the overhead introduced by method forwarding, which is used

in the generated Java code to implement traits. The performance

tests show that the overhead introduced is an acceptable tradeoff

with respect to the code reuse of traits. We also evaluate the

performance of the compiler of this new version of Xtraitj , which

is improved with respect to the previous versions.

A preliminary version of some of the material presented in

this paper appeared in Bettini and Damiani (2013, 2014) . The

specification of the semantics of Xtraitj (Section 3) and the tech-

nique to achieve binary level accessibility of traits (Section 4) are

completely new, and both the description of the implementation

(Section 5) and the evaluation of the achieved benefits (Section 6)

have been revised and extended to reflect the new implemen-

tation, to provide more details, and (in Section 6.2) to illustrate

performance results.

The implementation is available as an open source project and

ready-to-use update site at http://xtraitj.-sf.net . We also provide

pre-configured Eclipse distributions with Xtraitj installed, for sev-

eral architectures. Moreover, Xtraitj programs can be processed

with typical Java build tools, like Maven and Gradle, by relying

on the Maven integration provided in recent versions of Xtext

(Oehme, 2015). Xtraitj has been developed with Test Driven

Development technologies, with almost 100% code coverage, using

Continuous Integration systems (Jenkins and Travis-CI) and code

quality tools, such as SonarQube .

Organization of the paper. Section 2 illustrates the syntax and,

informally, the semantics of the Xtraitj programming language

through examples. Section 3 formally specifies the semantics

of Xtraitj by means of a translation that compiles traits away.

Section 4 describes how Xtraitj has been fully integrated with

Java and how binary only accessibility of traits has been achieved.

1 Indeed, during the development of this new version we found a few issues with

some internals of Xbase , in particular, related to the implementation of generics un-

der certain circumstances, which had not been considered. In our implementation,

we solved them by customizing many parts of the Xbase type system concerning

generics, but we are also working on fixing these issues in the Xbase code base as

well—see https://bugs.eclipse.org/bugs/show _ bug.cgi?id=468174 .

Please cite this article as: L. Bettini, F. Damiani, Xtraitj : Traits for the Java platform, The Journal of Systems and Software (2016),

http://dx.doi.org/10.1016/j.jss.2016.07.035

http://xtraitj.-sf.net
https://bugs.eclipse.org/bugs/show_bug.cgi?id=468174
http://dx.doi.org/10.1016/j.jss.2016.07.035

Download English Version:

https://daneshyari.com/en/article/4956423

Download Persian Version:

https://daneshyari.com/article/4956423

Daneshyari.com

https://daneshyari.com/en/article/4956423
https://daneshyari.com/article/4956423
https://daneshyari.com

