
ARTICLE IN PRESS

JID: JSS [m5G; August 10, 2016;22:2]

The Journal of Systems and Software 0 0 0 (2016) 1–16

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A Formal Approach to implement java exceptions in cooperative

systems

Simone Hanazumi, Ana C.V. de Melo

∗

Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010, Cidade Universitária, São

Paulo,05508-090, Brazil

a r t i c l e i n f o

Article history:

Received 18 May 2015

Revised 13 July 2016

Accepted 24 July 2016

Available online xxx

Keywords:

Coordinated atomic actions model

concurrent exception handling

java framework

program verification

a b s t r a c t

The increasing number of systems that work on the top of cooperating elements have required new tech-

niques to control cooperation on both normal and abnormal behaviors of systems. The controllability of

the normal behaviors has received more attention because they are concerned with the users expecta-

tions, while for the abnormal behaviors it is left to designers and programmers. However, for cooperative

systems, the abnormal behaviors, mostly represented by exceptions at programming level, become an

important issue in software development because they can affect the overall system behavior. If an ex-

ception is raised and not handled accordingly, the system may collapse. To avoid such situation, certain

concepts and models have been proposed to coordinate propagation and recovering of exceptional behav-

iors, including the Coordinated Atomic Actions (CAA). Regardless of the effort in creating these conceptual

models, an actual implementation of them in real systems is not very straightforward.

This article provides a reliable framework for the implementation of Java exceptions propagation and

recovery using CAA concepts. To do this, a Java framework (based on a formal specification) is presented,

together with a set of properties to be preserved and proved with the Java Pathfinder (JPF) model checker.

In practice, to develop new systems based on the given coordination concepts, designers/programmers

can instantiate the framework to implement the exceptional behavior and then verify the correctness of

the resulting code using JPF. Therefore, by using the framework, designers/programmers can reuse the

provided CAA implementation and instantiate fault-tolerant Java systems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The computational systems today are no longer single elements,

they are mostly made of a set of components working in a coop-

erative way Jonkers et al. (2004) ; Papazoglou et al. (2008) . It is

a reality for all systems in Service-Oriented Architecture (SOA) Ni

and Fan (2010) and for Component-based Systems Coronato and

De Pietro (2010) , mainly developed in Object-Oriented languages.

The common concept behind all these systems is the distribution

of tasks among elements that need to work together to provide

systems requirements. At the same time that components cooper-

ate to provide features that satisfy system requirements, they must

give a cooperative mechanism to recover from errors Randell and

Xu (1994) . Guaranteeing the dependability and, consequently, the

reliability of systems has become an important issue for the suc-

cess of many software enterprises since unreliable systems may

∗ Corresponding author. Fax: +55 11 30916134.

E-mail addresses: hanazumi@ime.usp.br , acvdemelo@gmail.com (S. Hanazumi),

acvm@ime.usp.br , acvdemelo@gmail.com (A.C.V. de Melo).

result in serious consequences involving material and life losses

Board (2012) . All this depends on good development methods and

how systems failures can actually be prevented.

Systems failures can arise as a result of physical or software

faults. Fault-tolerant systems can be created to deal with software

faults and solutions for them can be given at both programming

and architectural levels. At programming level, fault tolerance can

be treated by exception handling mechanisms that provide a clear

separation of codes for error recovery and normal behavior, and

helps in decreasing code complexity and software design mistakes.

The software systems must then comprise the normal behavior

code, in which errors are detected and the corresponding excep-

tions are raised, and the exception handler code Cristian (1982) , in

which the exceptional behavior is treated resulting in the error re-

covery.

Despite exception handling mechanisms being a step forward

for explicitly detecting and recovering systems from errors, they

need to be properly used to provide fault-tolerant systems. Excep-

tions can slow down programs if they are not correctly used Doshi

(2012) : memory and processors time are required to create, throw,

http://dx.doi.org/10.1016/j.jss.2016.07.033

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: S. Hanazumi, A.C.V. de Melo, A Formal Approach to implement java exceptions in cooperative systems, The

Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.033

http://dx.doi.org/10.1016/j.jss.2016.07.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:hanazumi@ime.usp.br
mailto:acvdemelo@gmail.com
mailto:acvm@ime.usp.br
mailto:acvdemelo@gmail.com
http://dx.doi.org/10.1016/j.jss.2016.07.033
http://dx.doi.org/10.1016/j.jss.2016.07.033

2 S. Hanazumi, A.C.V. de Melo / The Journal of Systems and Software 0 0 0 (2016) 1–16

ARTICLE IN PRESS

JID: JSS [m5G; August 10, 2016;22:2]

Fig. 1. Work overview: the focus is at the code/implementation level.

and catch exceptions. Also, the overuse of exceptions may obfus-

cate code, making it difficult to be used and the client code ig-

noring the raised exceptions. Programming communities have em-

ployed a great effort to establish a discipline on exception handling

mechanisms use Longshaw and Woods (2004) ; Patterns (2012) ;

Wirfs-Brock (2006) ; however no patterns handbook is established

so far for them. In practice, many novice or mid-level software en-

gineers are not able to treat faults properly McCune (2006) , either

because no priority is given to this activity or they do not follow

a style to define, raise and handle exceptions. Some reasons can

be pointed out. First, most systems do not treat their exceptional

behavior at the design level. As a result, exceptions are treated by

demand, in the way developers understand it must be done. Sec-

ond, many companies do not adopt a style to treat exceptions and

each programmer decides particular cases.

In principle, most of these problems could be sorted out at

the design level, using patterns, having companies adopting cer-

tain styles and training their developers appropriately. However,

these solutions are applicable to exceptions locally treated by sin-

gle components while, in practice, systems today are made of a

set of cooperating components. Then, faults embedded in concur-

rent and distributed systems, where an exception raised during an

operation may cause a propagation of failures affecting the relia-

bility of the whole system, must be managed at architectural level

to prevent systems suddenly stopping an ongoing computation. In

these cases, apart from locally treating failures, their propagation

must be treated by the entire system. This requires models to rec-

ognize and recover from errors, providing the corresponding poli-

cies to bring the whole system to a stable state in a coordinated

manner. Hence, to guide the development of fault-tolerant systems,

a number of models and approaches were proposed, such as trans-

action Gray and Reuter (1992) , conversation Randell (1975) and co-

ordinated atomic actions (CAAs) Xu et al. (1995) . CAAs have been

used in real critical systems Beder et al. (20 0 0) ; Capozucca et al.

(2005) and provides a formal model to manage exception handling

and systems recovery.

Coordinated atomic actions (CAAs) provide a conceptual model

to interrelate propagation of exceptions in a cooperative manner.

This model can guide users to treat exceptions in a well-organized

way and maintaining the whole system in stable states. However,

even if users have the intention to follow the CAA concepts, cer-

tain inconsistencies may arise depending on the system complex-

ity. A step forward to strictly follow CAA concepts is predefining

a standard architectural model through formal means Pereira and

de Melo (2010) . The formal strategy for specifying fault-tolerant

systems helps in the identification of ambiguities, omissions and

inconsistencies at the specification level, and the formal verifica-

tion serves as a fault-prevention mechanism to better eliminate

design mistakes. Although with the use of such a framework one

can make an instance of the formal model and then check cer-

tain CAA properties, it is done at the design level and the gap of

checking consistency at implementation level remains. So, an im-

plementation of the conceptual CAA model is required. Moreover,

whenever an implementation of a design model is provided, new

elements need to be inserted as you go down to code. Due to these

new elements in the more concrete model, certain properties guar-

anteed at the specification level might no longer be preserved in

the code counterpart.

The main contribution of the current work is twofold (Fig. 1

- right-hand side). First, it provides an implementation of a for-

mal model to handle exceptions at an architectural level, based on

CAAs. This implementation framework can be reused and instan-

tiated to actually provide an implementation of a coordinated ex-

ception handling mechanism for a system. Second, since new el-

ements need to be inserted as the implementation framework is

instantiated, a set of CAA properties are defined to be checked

with the Java Pathfinder model checker (core version) Team

(2012) to guarantee that the framework correctness is kept after its

instantiation.

A preliminary version of this paper appeared in the proceed-

ings of QUATIC’12 (8th International Conference on the Quality

of Information and Communications Technology) Hanazumi and

de Melo (2012) . This paper includes the following additional con-

tributions: a discussion regarding this paper results and related

work; an overview of the CAA architectural model in CSP (Com-

municating Sequential Processes); a complete description of the

Java framework elements and how they are related to the CAA for-

mal model; a full example source code presenting how one can

use the Java framework; details concerning to the CAA properties

specification and how they were implemented in the JPF model

checker.

The remaining of this paper is organized as follows:

Section 2 describes related work; Section 3 presents the coor-

dinated atomic actions concepts; Section 4 describes the CSP

Please cite this article as: S. Hanazumi, A.C.V. de Melo, A Formal Approach to implement java exceptions in cooperative systems, The

Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.033

http://dx.doi.org/10.1016/j.jss.2016.07.033

Download English Version:

https://daneshyari.com/en/article/4956426

Download Persian Version:

https://daneshyari.com/article/4956426

Daneshyari.com

https://daneshyari.com/en/article/4956426
https://daneshyari.com/article/4956426
https://daneshyari.com

