
ARTICLE IN PRESS

JID: JSS [m5G; February 9, 2017;3:30]

The Journal of Systems and Software 0 0 0 (2017) 1–23

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

CollabRDL: A language to coordinate collaborative reuse

Edson M. Lucas a , b , ∗, Toacy C. Oliveira

a , d , Kleinner Farias c , Paulo S.C. Alencar d

a PESC/COPPE, Federal University of Rio de Janeiro, Brazil
b IPRJ/UERJ, Polytechnic Institute, State University of Rio de Janeiro, Brazil
c PIPCA, University of Vale do Rio dos Sinos (Unisinos), Brazil
d David Cheriton School of Computer Science, University of Waterloo, Canada

a r t i c l e i n f o

Article history:

Received 19 June 2015

Revised 17 January 2017

Accepted 31 January 2017

Available online xxx

Keywords:

Software reuse

Collaboration

Framework

Language

Reuse process

a b s t r a c t

Coordinating software reuse activities is a complex problem when considering collaborative software de-

velopment. This is mainly motivated due to the difficulty in specifying how the artifacts and the knowl-

edge produced in previous projects can be applied in future ones. In addition, modern software systems

are developed in group working in separate geographical locations. Therefore, techniques to enrich collab-

oration on software development are important to improve quality and reduce costs. Unfortunately, the

current literature fails to address this problem by overlooking existing reuse techniques. There are many

reuse approaches proposed in academia and industry, including Framework Instantiation, Software Prod-

uct Line, Transformation Chains, and Staged Configuration. But, the current approaches do not support

the representation and implementation of collaborative instantiations that involve individual and group

roles, the simultaneous performance of multiple activities, restrictions related to concurrency and syn-

chronization of activities, and allocation of activities to reuse actors as a coordination mechanism. These

limitations are the main reasons why the Reuse Description Language (RDL) is unable to promote col-

laborative reuse, i.e., those related to reuse activities in collaborative software development. To overcome

these shortcomings, this work, therefore, proposes CollabRDL, a language to coordinate collaborative reuse

by providing essential concepts and constructs for allowing group-based reuse activities. For this purpose,

we extend RDL by introducing three new commands, including role, parallel , and doparallel . To evaluate

CollabRDL we have conducted a case study in which developer groups performed reuse activities collab-

oratively to instantiate a mainstream Java framework. The results indicated that CollabRDL was able to

represent critical workflow patterns, including parallel split pattern, synchronization pattern, multiple-

choice pattern, role-based distribution pattern, and multiple instances with decision at runtime. Overall,

we believe that the provision of a new language that supports group-based activities in framework in-

stantiation can help enable software organizations to document their coordinated efforts and achieve the

benefits of software mass customization with significantly less development time and effort.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Modern software systems are developed by people working to-

gether, since the complexity of these systems requires knowledge

related to numerous fields, including programming languages,

human-machine interfaces and databases, which goes beyond the

knowledge associated with a single system application domain. In

this context, collaboration among people emerges as an important

factor for the success of a software project development, and,

∗ Corresponding author.

E-mail addresses: edmlucas@cos.ufrj.br , emlucas@iprj.uerj.br (E.M. Lu-

cas), toacy@cos.ufrj.br (T.C. Oliveira), kleinnerfarias@unisinos.br (K. Farias),

palencar@uwaterloo.ca (P.S.C. Alencar).

therefore, tools to support collaborative work are crucially needed

(Barthelmess and Anderson, 2002).

Another important aspect pertaining the construction of soft-

ware systems is Software Reuse (Frakes and Kang, 2005). This

concept involves, in part, reusing the knowledge acquired in previ-

ous projects during the development of a current project, and can

result in higher-quality outcomes and resource savings. For this,

some reuse techniques have proposed in the last decades, such

as the RDL, a Reuse Description Language (Oliveira et al., 2007).

In this scenario, Collaborative Software Reuse (Mendonça et al.,

2008) (Noor et al., 2007) combines concepts of collaborative work

and software development with those related to reusable arti-

facts, so that the development process can progress harmoniously

(Mohagheghi and Conradi, 2007).

http://dx.doi.org/10.1016/j.jss.2017.01.031

0164-1212/© 2017 Elsevier Inc. All rights reserved.

Please cite this article as: E.M. Lucas et al., CollabRDL: A language to coordinate collaborative reuse, The Journal of Systems and Software

(2017), http://dx.doi.org/10.1016/j.jss.2017.01.031

http://dx.doi.org/10.1016/j.jss.2017.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:edmlucas@cos.ufrj.br
mailto:emlucas@iprj.uerj.br
mailto:toacy@cos.ufrj.br
mailto:kleinnerfarias@unisinos.br
mailto:palencar@uwaterloo.ca
http://dx.doi.org/10.1016/j.jss.2017.01.031
http://dx.doi.org/10.1016/j.jss.2017.01.031

2 E.M. Lucas et al. / The Journal of Systems and Software 0 0 0 (2017) 1–23

ARTICLE IN PRESS

JID: JSS [m5G; February 9, 2017;3:30]

In order to achieve the full potential of reusing software

artifacts, one must embrace Systematic Reuse, which advo-

cates the need of repeatable and (semi-)formal reuse processes

(Rothenberger et al., 2003), where reusable artifacts and their as-

sociated constraints are known upfront Furthermore, reuse should

be planned and coordinated (Malone and Crowston, 1994), and

developers must perform the reuse activities configuring reusable

artifacts in a collaborative and coordinated way to avoid errors

and rework. A key aspect when practicing Systematic Reuse is

documentation, and the documentation of a typical collaborative

software reuse process needs to describe activities that can be

interactive. Thus, multiple executions of the same process can

produce different software behavior, as they are consequences

of choices and responses resulting from interactive activities.

Therefore, the documentation can support building software

with different characteristics for the same domain, e.g., when a

team decides to reuse the framework Portlet to build Web-based

systems (Bellas, 2004) (Hepper, 2008).

In addition, Oliveira et al. propose a Reuse Description Language

(RDL) for describing reuse processes and minimizing the problems

associated with the instantiation of object-oriented frameworks

(Oliveira et al., 2007). RDL is a textual and executable language,

allowing the representation of reuse activities organized as a

reuse process. RDL is also an interactive language. As a result, the

RDL runtime environment prompts reusers during the framework

instantiation process, to gather application-specific information

(Oliveira et al., 2007, 2011).

Although RDL is effective for representing reuse activities, it

falters when a collaborative reuse process is needed, a common

scenario in software development projects. Today, a program in

RDL expresses a sequential reuse process typically representing

a single reuser, and is therefore unsuitable for complex reuse

situations (Oliveira et al., 2007, 2011). The key problems are that

RDL is (1) imprecise for specifying the interplay between the reuse

activities, (2) inefficient for allowing developers to create working

groups based on the available critical skills and responsibilities,

and (3) ineffective for specifying how different working groups

should perform distinct reuse activities collaboratively and in

parallel. Hence, developers end up being unable to use the RDL

constructs to support a systematic collaborative reuse process,

especially when parallel activities performed by specific working

groups need to be represented.

This paper, therefore, extends RDL towards supporting col-

laborative reuse activities. The extension, which leads to a new

language called CollabRDL, involves the definition of three com-

mands: (1) Role allows assigning reuse activities to working

groups; (2) Parallel allows modularizing a set of commands that

can be simultaneously performed; and (3) Doparallel allows per-

forming blocks of commands concurrently. These commands were

selected for our collaborative reuse extension for three reasons.

First, to promote a systematic, collaborative reuse in a coor-

dinated way in RDL, developers must be able to allocate reuse

activities to development team members considering their skills

and responsibilities. Moreover, the current literature (e.g., (De Paoli

and Tisato, 1994) (OASIS, 2006) (BPMN, 2011) (Cortes and Mishra,

1996) (Li and Muntz, 20 0 0) (Briggs et al., 2003) (Fuks et al., 2007))

highlights that collaborative languages must allow associating

activities to working groups; otherwise, the collaboration in devel-

opment teams can be compromised. In fact, the Communication,

Coordination and Cooperation (3C) model, proposed in (Ellis et al.,

1991), refers to the activity-aware software development as a way

to generate context for the execution of activities based on the

understanding of activities performed by other developers.

Second, an ever-present need in collaborative software develop-

ment is the concurrent execution of activities. For this, developers

need to carefully define upfront which activities may be performed

in parallel. Unfortunately, these definitions are usually done based

on several mentally held indicators (a.k.a. experience) of devel-

opers, or even by personal communication (i.e., informally). This

may transform the modularization of commands that can be run

together into an informal but error-prone task.

Third, the current version of the RDL cannot determine how

blocks of activities must be performed in parallel, despite its

capacity to represent the sequential behavior, for example, using

a traditional Loop command. Today, pivotal concepts (e.g., co-

ordination) for supporting the simultaneity and synchronization

of activities are still lacking. Hence, the RDL fails to reach the

required coordination of modularized blocks of activities so as

to enable them to work together effectively. Therefore, we argue

that these commands are necessary and sufficient to support

the broader collaboration issues found in RDL. We make also no

claims about the generality of the proposed commands beyond

collaboration in the context of RDL programs.

In addition, these new commands overcome critical problems,

which include the inability of specifying how the produced arti-

facts and the acquired knowledge should be reused and the lack

of constructs for describing how the reuse activities should be

performed by groups of developers asynchronously or in parallel.

These commands are fully supported by a runtime environment

based on the workflow and Business Processes Manager (BPM),

which provides facilities to load, start and run processes, besides

allowing workflow functionalities. We chose Business Process

Model and Notation (BPMN) to CollabRDL environment because

BPMN is a pattern in the context of BPM that has been maintained

by the Object Management Group (OMG). Furthermore, there are

many environments offering support to BPMN (BPMN, 2016). Our

initial evaluation has shown that the proposed commands are

effective by using them to represent a set of well-established

workflow patterns and performing a realistic case study in which

two working groups collaboratively performed reuse activi-

ties for instantiating a mainstream Java framework, OpenSwing

(OpenSwing, 2015). In total, the reuse process led to the creation

of 49 attributes and the redefinition of 90 methods.

The remainder of this paper is organized as follows. Section

2 briefly introduces the concepts of collaboration, reuse process

and describes RDL. Section 3 presents CollabRDL as an extension

of RDL and describes its commands. Section 4 presents an en-

vironment for running reuse processes expressed in CollabRDL.

Section 5 presents our evaluation of CollabRDL. Section 6 reviews

related work and, lastly, Section 7 concludes our paper with a final

discussion and a brief description of future work.

2. Background

CollabRDL aims at defining a collaborative reuse process. As

a result, the following subsections briefly introduce the main

concepts used in this work, such as Collaboration, Reuse Processes

and RDL.

2.1. Collaboration

Collaboration is a kind of cooperation where interactions

between people must take place in an organized and planned

manner to achieve a common goal. Fuks et al. (2007) explore the

3C model that was originally presented by Ellis et al. (1991) . The

3C model is composed of Communication, Coordination and Coop-

eration. Coordination makes the link between communication and

cooperation in order to promote collaboration. Cooperation is a set

of operations during a session in a shared working environment

in the context of groupware (Ellis et al., 1991). In this sense, the

3C model emphasizes the importance of awareness, defined by

Please cite this article as: E.M. Lucas et al., CollabRDL: A language to coordinate collaborative reuse, The Journal of Systems and Software

(2017), http://dx.doi.org/10.1016/j.jss.2017.01.031

http://dx.doi.org/10.1016/j.jss.2017.01.031

Download English Version:

https://daneshyari.com/en/article/4956428

Download Persian Version:

https://daneshyari.com/article/4956428

Daneshyari.com

https://daneshyari.com/en/article/4956428
https://daneshyari.com/article/4956428
https://daneshyari.com

