
The Journal of Systems and Software 129 (2017) 60–78 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Observational slicing based on visual semantics 

Shin Yoo 

a , David Binkley 

b , ∗, Roger Eastman 

b 

a School of Computing, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea 
b Department of Computer Science, Loyola University Maryland, Baltimore, MD, USA 

a r t i c l e i n f o 

Article history: 

Received 2 February 2015 

Revised 26 January 2016 

Accepted 6 April 2016 

Available online 13 April 2016 

Keywords: 

Observation 

Non-traditional semantics 

a b s t r a c t 

Program slicing has seen a plethora of applications and variations since its introduction over 35 years ago. 

The dominant method for computing slices involves significant complex source-code analysis to model 

the dependencies in the code. A recently introduced alternative, observation-based slicing, sidesteps this 

complexity by observing the behavior of candidate slices. Observation-based slicing has several other 

strengths, including the ability to easily slice multi-language systems. 

However, the initial implementation of observation-based slicing, ORBS, remains rooted in tradition as it 

captures semantics by comparing sequences of values. This raises the question of whether it is possible 

to extend slicing beyond its traditional semantic roots. A few existing projects have attempted this but 

the extension requires considerable effort. 

If it is possible to build on the ORBS platform to more easily generalize slicing to languages with non- 

traditional semantics, then there is the potential to vastly increase the range of programming languages 

to which slicing can be applied. ORBS supports this by reducing the problem to that of generalizing how 

semantics are captured. Taking Picture Description Languages as a case study, the challenges and effec- 

tiveness of such a generalization are considered. The results show that not only is it possible to generalize 

the ORBS implementation, but the resulting slicer is quite effective, removing from 8% to 98% of the orig- 

inal source code with an average of 83%. Finally a qualitative look at the slices finds the technique very 

effective, at times producing minimal slices. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

At the time of its introduction program slicing was devised for 

use with simple imperative source code ( Weiser, 1979 ). During 

the ensuing 35 years the applicability of the technique has been 

expanded to an ever widening definition of source code ( Harman, 

2010 ). Examples include slicing object-oriented code ( Larsen and 

Harrold, 1996 ), slicing binary executables ( Cifuentes and Fraboulet, 

1997 ), and slicing finite-state models ( Androutsopoulos et al., 

2011 ). 

Informally, Weiser defined a slice as a subset of a program that 

preserves the behavior of a specific computation from the pro- 

gram. Slicing allows one to find semantically meaningful decom- 

positions of a program. For example, it allows the tax computation 

to be extracted from a mortgage payment system. Weiser’s defini- 

tion of a slice includes two requirements: a syntactic requirement 

and a semantic requirement. The syntactic requirement is that the 

slice be obtainable from the original program by deleting elements 

∗ Corresponding author. 

E-mail addresses: shin.yoo@kaist.ac.kr (S. Yoo), binkley@cs.loyola.edu (D. Bink- 

ley), reastman@loyola.edu (R. Eastman). 

(typically statements). Relaxing this requirement has been help- 

ful in slicing programs with unstructured control flow ( Choi and 

Ferrante, 1994; Harman et al., 2006 ) and led to the development 

of Amorphous Slicing ( Harman and Danicic, 1997; Harman et al., 

2003 ). 

The semantic requirement defines the behavior of a slice. It re- 

quires that a slice capture a subset of the original program’s se- 

mantics. For a single threaded, single procedure imperative pro- 

gram this can be done using the sequence of values produced 

at each program point ( Weiser, 1979 ). Generalization to sets of 

sequences-of-values can capture the semantics of more complex 

programs such as those with procedures ( Binkley, 1993; Horwitz 

et al., 1990 ) threads ( Krinke, 1998 ), and objects ( Larsen and Har- 

rold, 1996 ). 

Recently observation-based slicing ( Binkley et al., 2014; 2013 ) 

was introduced to tackle two long-standing challenges in program 

slicing: slicing multi-language systems and slicing systems that 

contain (third party) components whose source code is often not 

available. Observation-based slicing works by observing the seman- 

tics of candidate slices. This approach supports a generalization of 

program slicing to a broader range of source code kinds including 

languages with non-traditional semantics (i.e., where the meaning 

of a program is not captured by sequences of values). 
http://dx.doi.org/10.1016/j.jss.2016.04.009 

0164-1212/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.jss.2016.04.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.009&domain=pdf
mailto:shin.yoo@kaist.ac.kr
mailto:binkley@cs.loyola.edu
mailto:reastman@loyola.edu
http://dx.doi.org/10.1016/j.jss.2016.04.009


S. Yoo et al. / The Journal of Systems and Software 129 (2017) 60–78 61 

This paper explores the generalization by building on previ- 

ous work presented at SCAM 2014 ( Yoo et al., 2014 ). It considers, 

as a representative example of languages with non-traditional se- 

mantics, Picture Description Languages (PDLs). Source code written 

in such a language specifies a graphic image in terms of objects 

such as shapes, boxes, arrows, etc. These languages can be Turing- 

complete, or focused on output description with limited control 

structures. Examples of such languages include Postscript, pic , xfig , 

html (including code written in embedded languages such as CSS 

and JavaScript ) and TikZ/PGF . While informally the semantics of 

such languages can be straightforward, requiring only visual in- 

spection, the problem of slicing them is subtle as discussed in 

Section 4 . 

While slicing languages with non-traditional semantics is, in it- 

self, an interesting problem, there are also practical motivations 

behind the proposed technique. First, slicing PDLs can help users 

understand how to generate (i.e., write the code for) complicated 

diagrams. Users of PDLs often rely on online repositories (or gal- 

leries ) of various diagrams to learn how to program specific shapes 

and layouts. In this context, slicing can serve as a program com- 

prehension aid where users can select specific parts of a larger 

diagram and allow the slicer to identify the PDL statements re- 

sponsible for generating the selected parts. Second, slicing PDLs 

can help locate software faults that manifest themselves visually, 

such as HTML presentation failures ( Mahajan and Halfond, 2015 ). 

Given that dynamic web pages usually involve multiple languages 

such as HTML, CSS, and JavaScript, the observation-based nature 

of the proposed slicing technique is a significant benefit, as it can 

easily handle multiple language descriptions. 

By taking on the challenge of slicing languages whose output 

is visual rather than those that can be captured using more tradi- 

tional semantics, such as Weiser’s sequences of values, this work 

shows that it is possible to increase the variety of languages to 

which program slicing can be applied. More specifically, the two 

main contributions of this paper are: 

• a generalization of observation-based slicing to languages with 

non-traditional semantics, and 

• an empirical study that demonstrates the application and oper- 

ation of this new approach, using PDLs as representative exam- 

ples. 

The research questions used to investigate the generalization 

are introduced in Section 3 followed by the generalization itself in 

Section 4 . The empirical investigation begins in Section 5 with the 

study of an initial implementation built using off-the-shelf com- 

ponents and experiments investigating its quantitative and qual- 

itative aspects. This initial study uncovers several shortcomings, 

discussed in Section 6 , which leads to an improved implementa- 

tion. Section 7 empirically investigates the performance of the im- 

proved implementation. Before these studies, a review of program 

slicing and specifically the observation-based approach is given in 

Section 2 . Finally, the paper ends with a discussion of related work, 

future work, and a brief summary. 

2. Program slicing 

Program slicing has many applications, including testing 

( Binkley, 1998; Hierons et al., 2002 ), debugging ( Kusumoto et al., 

2002; Weiser and Lyle, 1985 ), maintenance ( Gallagher and Lyle, 

1991; Hajnal and Forgács, 2011 ), re-engineering ( Cifuentes and 

Fraboulet, 1997 ), re-use ( Beck and Eichmann, 1993; Cimitile et al., 

1995 ), comprehension ( De Lucia et al., 1996; Tonella, 2003 ) and 

refactoring ( Ettinger and Verbaere, 2004 ). A more complete intro- 

duction can be found in several surveys and tutorials such as Gal- 

lagher and Binkley’s Foundation of Software Maintenance article 

( Binkley and Gallagher, 1996 ). 

Slicing can be classified as either static or dynamic: a static 

slice ( Weiser, 1982 ) of program P is a subset of P that has the same 

behavior as P for a specified variable at a specified location (a slic- 

ing criterion) for all possible inputs , while a dynamic slice ( Korel 

and Laski, 1988 ) preserves this behavior for only a single input (or 

a small set of inputs). 

Weiser’s original definition of a static slice, used the state tra- 

jectory projection function, PROJ C ( Weiser, 1982 ), which projects 

out of a trajectory T those elements relevant to slicing criteria 

C . A trajectory is a record of the values computed by a program 

(e.g., the sequence of values assigned to the left-hand-side vari- 

able in an assignment statement). For static slicing the slicing cri- 

teria C = (v , l) includes a variable v and a line (location) l from 

the source code. The criterion for a dynamic slice, denoted (v , l, I ) , 
adds a set of inputs I (a variant replaces v with v i , the i th occur- 

rences of v in the trajectory). 

Most static and dynamic slicing algorithms employ complex de- 

pendence analysis to extract information from a program (and its 

execution in the case of dynamic slicing). These algorithms then 

decide which statements should be retained to form the slice. The 

recently introduced observation-based slicing ( Binkley et al., 2014; 

2013 ) replaces the complex and expensive dependence analysis 

with observation. Its first implementation, ORBS, computes a slice 

by deleting statements, executing the candidate slice, and observ- 

ing its behavior. The use of execution makes the approach inher- 

ently dynamic in nature. It also means that ORBS takes a very op- 

erational view of program semantics. One advantage of this view 

is that observation is considerably simpler to work with than the 

complex construction of a semantic model capturing dependence 

( Podgurski and Clarke, 1990; Parsons-Selke, 1989 ). For ORBS all 

that is required is an algorithm for comparing projected execu- 

tions. Thus ORBS replaces the complexity of generating a correct 

answerer with the simpler task of testing correctness. 

Being freed from complex program dependence analysis allows 

observation-based slicing to focus on subsets of a program; thus 

an observation-based slice further extends the slice criteria to in- 

clude components of interest, CoI . Slicing’s deletion is restricted to 

the CoI . This enables, for example, slicing programs that contain 

binary components and source code such as third-party libraries, 

which are excluded from CoI and thus need not be changed by the 

slicer. Consequently, an observation-based slice, taken with respect 

to the criteria (v , l, I, CoI) , preserves the state trajectory for v at 

l for the selected inputs in I, while deleting statements from the 

components of CoI but no other components. 

Furthermore, observation-based slicing is inheritantly language- 

independent. It achieves this by replacing the deletion of state- 

ments (a language specific concept) with the deletion of lines of 

text. While no assumption about the contents of a line is made 

(e.g., ORBS does not assume that the source files are formatted 

with one statement per line) slice quality degrades if multiple 

statements occupy the same line as they are inseparable at the lex- 

ical level. More formally, an ORBS slice is defined as follows: 

Observation-based slicing ( Binkley et al., 2014 ): An observation- 

based slice S of program P taken with respect to slicing criterion 

C = (v , l, I, CoI) composed of variable v , line l , set of inputs I, and 

components of interest CoI , is any executable program with the fol- 

lowing properties: 

1. S can be obtained from P by deleting zero or more lines from 

CoI . 

2. Whenever P halts on input I ∈ I with state trajectory T ( P, I, v, l ) 

then S also halts on input I with state trajectory T ( S, I, v, l ) such 

that PROJ C ( T ( P, I, v, l )) = PROJ C ( T ( S, I, v, l )). 

The key to observation-based slicing is observing the behavior of 

candidate slices . The initial ORBS implementation forms candidate 

slices by deleting a continuous sequence of lines from the current 



Download English Version:

https://daneshyari.com/en/article/4956439

Download Persian Version:

https://daneshyari.com/article/4956439

Daneshyari.com

https://daneshyari.com/en/article/4956439
https://daneshyari.com/article/4956439
https://daneshyari.com

