
ARTICLE IN PRESS

JID: JSS [m5G; August 30, 2016;20:58]

The Journal of Systems and Software 0 0 0 (2016) 1–20

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Empirical study on refactoring large-scale industrial systems and its

effects on maintainability

Gábor Sz ̋oke, Gábor Antal, Csaba Nagy, Rudolf Ferenc

∗, Tibor Gyimóthy

Department of Software Engineering, University of Szeged, Hungary

a r t i c l e i n f o

Article history:

Received 16 February 2015

Revised 10 August 2016

Accepted 23 August 2016

Available online xxx

Keywords:

Refactoring

Software quality

Maintainability

Coding issues

Antipatterns

ISO/IEC 25010

a b s t r a c t

Software evolves continuously, it gets modified, enhanced, and new requirements always arise. If we do

not spend time occasionally on improving our source code, its maintainability will inevitably decrease.

The literature tells us that we can improve the maintainability of a software system by regularly refac-

toring it. But does refactoring really increase software maintainability? Can it happen that refactoring de-

creases the maintainability? Empirical studies show contradicting answers to these questions and there

have been only a few studies which were performed in a large-scale, industrial context. In our paper, we

assess these questions in an in vivo context, where we analyzed the source code and measured the main-

tainability of 6 large-scale, proprietary software systems in their manual refactoring phase. We analyzed

2.5 million lines of code and studied the effects on maintainability of 315 refactoring commits which

fixed 1273 coding issues. We found that single refactorings only make a very little difference (sometimes

even decrease maintainability), but a whole refactoring period, in general, can significantly increase main-

tainability, which can result not only in the local, but also in the global improvement of the code.

© 2016 Published by Elsevier Inc.

1. Introduction

It is typical of software systems that they evolve over time, so

they get enhanced, modified, and adapted to new requirements.

As a side-effect of this evolution, the source code usually becomes

more complex and drifts away from its original design, hence the

maintainability of the software erodes as time passes. This is one

reason why a major part of the total software development cost

(about 80%) is spent on software maintenance tasks (Lientz et al.,

1978). One solution to prevent the negative effects of this soft-

ware erosion , and to improve the maintainability is to perform

refactoring tasks regularly.

After the term refactoring was introduced in the PhD disserta-

tion of Opdyke (1992) , Fowler published a catalog of refactoring

transformations, where he defined refactoring as “a change made

to the internal structure of software to make it easier to understand

and cheaper to modify without changing its observable behavior ”

(Fowler, 1999). Researchers quickly recognized that this technique

can also be applied to other areas, such as improving performance,

security, and reliability (Mylopoulos et al., 1992). Many researchers

∗ Corresponding author.

E-mail addresses: gabor.szoke@inf.u-szeged.hu (G. Sz ̋oke), antal@inf.u-szeged.hu

(G. Antal), ncsaba@inf.u-szeged.hu (C. Nagy), ferenc@inf.u-szeged.hu (R. Ferenc),

gyimi@inf.u-szeged.hu (T. Gyimóthy).

have started to study the relation between refactoring and main-

tainability too, and they usually investigate different refactoring

methods (mostly from Fowler’s catalog (Fowler, 1999)) and their

effect on code metrics, such as complexity and coupling (Sahraoui

et al., 20 0 0; Stroulia and Kapoor, 2001; Du Bois et al., 2004).

Kim et al. (2012) found in their study that, in practice, develop-

ers’ views on refactoring usually differ from the academic ones. As

our previous study (Sz ̋oke et al., 2014) indicates it too, developers

often tend to do refactoring to fix coding issues (e.g. coding rule

violations identified by static analyzers) that clearly affect the

maintainability of the system, instead of refactoring code smells

or antipatterns.

Empirical studies show contradicting findings on the benefits

of refactoring. For example, Ratzinger et al. (2008) say that in-

creasing the number of refactoring edits can decrease the number

of defects, while Weißgerber and Diehl (2006a) say that a high

ratio of refactoring edits is often followed by an increasing ratio of

bug reports. Most of these studies were performed on open-source

systems or in controlled in vitro environment, and there are

relatively few studies in a large-scale, industrial context.

In this study, we investigate refactorings from the developers’

point of view, in an in vivo environment by studying the devel-

opers of software development companies working on large-scale,

proprietary software systems. In a project, we had a chance to

work together with five software development companies who

http://dx.doi.org/10.1016/j.jss.2016.08.071

0164-1212/© 2016 Published by Elsevier Inc.

Please cite this article as: G. Sz ̋oke et al., Empirical study on refactoring large-scale industrial systems and its effects on maintainability,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.08.071

http://dx.doi.org/10.1016/j.jss.2016.08.071
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:gabor.szoke@inf.u-szeged.hu
mailto:antal@inf.u-szeged.hu
mailto:ncsaba@inf.u-szeged.hu
mailto:ferenc@inf.u-szeged.hu
mailto:gyimi@inf.u-szeged.hu
http://dx.doi.org/10.1016/j.jss.2016.08.071
http://dx.doi.org/10.1016/j.jss.2016.08.071

2 G. Sz ̋oke et al. / The Journal of Systems and Software 0 0 0 (2016) 1–20

ARTICLE IN PRESS

JID: JSS [m5G; August 30, 2016;20:58]

faced maintenance problems every day and wanted to improve the

maintainability of their products. By taking part in this project,

they got an extra budget to refactor their own source code. The

systems of these companies, which we selected for our study, con-

sisted of about 2.5 million lines of code altogether and in the end,

their developers committed 1273 source code fixes where they

used manual refactoring techniques to make the modifications.

The primary contribution of this article is the experience report

of what we learned from our large-scale experiment, which was

carried out in this in vivo industrial environment on refactoring. 1

We explore the data set that we gathered by addressing the

following motivating research questions:

• Is it possible to recognize the change in maintainability caused

by a single refactoring operation with a probabilistic quality

model based on code metrics, coding issues and code clones?
• Does refactoring increase the overall maintainability of a

software system?
• Can it happen that refactoring decreases maintainability?

In the following, we present the background of the motivating

refactoring project in Section 2 , where we also briefly introduce

the main concepts of the ColumbusQM probabilistic maintainabil-

ity model that we used to measure the maintainability changes in

the source code. Then, in Section 3 , we present the results of our

analysis including some interesting observations that we obtained

during the experiments. After, we discuss threats to validity in

Section 4 . In Section 5 we present related work, and finally, in

Section 6 we draw some conclusions and describe plans for future

work.

2. Overview

2.1. Motivating project

This research work was part of an R&D project supported by

the EU and the Hungarian State. The goal of the two-year project

was to develop a software refactoring framework, methodology

and software tools to support the ‘continuous re-engineering’

methodology, hence provide support to identify problematic code

parts in a system and to refactor them to enhance maintainability.

During the project, we developed an automatic/semi-automatic

refactoring framework and tested it on the source code of indus-

trial partners, having an in vivo environment and live feedback on

the tools. Hence partners not only participated in this project by

helping to develop the refactoring tools, but they also tested and

used the toolset on the source code of their own product. This

provided a good opportunity for them to refactor their own code

and improve its maintainability.

Five experienced software companies were involved in this

project. They were founded in the last two decades and they

started developing some of their systems before the millennium.

The systems that we selected for this study consist of about 2.5

million lines of code altogether, are written mostly in Java, and

cover different ICT areas like ERPs, ICMs and online PDF generators

(see Table 1).

In the initial steps of the project we asked the companies to

manually refactor their code, and provide detailed documentation

of each refactoring, explaining the main reasons and the steps of

how they improved the targeted code fragment. We gave them

support by using static code analyzers to help them identify code

1 Parts of the results of this study were first presented in our conference paper

(Sz ̋oke et al., 2014). Here, we almost double the number of subject systems, show

more details, draw further conclusions, and provide an online appendix to make

our study reproducible.

Table 1

Companies involved in the project.

Company Primary domain

Company I Enterprise resource planning (ERP)

Company II Integrated business management

Company III Integrated collection management

Company IV specific business solutions

Company V Web-based PDF generation

parts that should be refactored in their code (antipatterns or

coding issues, for instance). Developers had to fill out a survey for

each refactoring commit. This survey contained questions targeting

the initial identification steps and they also had to explain why,

how and what they changed in their code. There were around 40

developers involved in this phase of the project (5–10 on average

from each company) who were asked to fill out the survey and

carry out the modifications in the code. Based on the results of

this manual refactoring, we designed and implemented a refactor-

ing framework with the companies. This framework helped them

in the final phase of the project to perform automatic refactorings.

In this study, we report data that we gathered during the manual

refactoring phase.

In our previous study (Sz ̋oke et al., 2014), we examined the

questionnaires that were filled out by the developers before

and after they manually refactored the code. We investigated

which attributes drove the developers to select coding issues for

refactorings, and which of these performed best. We found that

these companies, when they had extra time and a budget, actually

optimized their refactoring process to improve the maintainability

of their systems (i.e., what they thought would improve maintain-

ability). Here, we take a closer look at what they really did in the

source code, and examine the impact of their refactoring commits

on the maintainability of the system through static analysis.

We selected six systems, and for each system

2 we analyzed the

maintainability of the revisions where developers committed refac-

torings and the revisions before these commits. For the maintain-

ability analysis we used the SourceAudit tool, which is a member

of the QualityGate 3 product family of FrontEndART Ltd. This tool

measures the source code maintainability based on the Colum-

busQM probabilistic quality model (Bakota et al., 2011), where the

maintainability of the system is determined by several lower level

characteristics (e.g. metrics and coding issues). SourceAudit is a

software quality management tool that allows the automatic and

objective assessment of the maintainability of a system.

These maintainability analyses were performed after the man-

ual refactoring phase of the systems, and were independent of

the above mentioned reports of the static analyzers. The changes

in maintainability were not shown to the developers during the

refactoring phase. The goal was to observe the changes without

affecting how the developers planned their manual refactorings.

2.2. Quality model

We briefly introduce the ColumbusQM quality model 4 , which is

based on the ISO/IEC 25,010 (ISO/IEC, 2005) international standard

for software product quality. Thanks to the probabilistic approach,

this model integrates the objective, measurable characteristics of

the source code (e.g. code metrics) and expert knowledge, which

2 We ended up having only six systems because Company V bankrupted after the

manual refactoring phase and we were not able to get access to their code for the

analysis, just the surveys. For this, we omit Company V from the rest of the article.
3 QualityGate product home page – http://quality-gate.com/ .
4 Detailed description of the ColumbusQM quality model is available in the work

of Bakota et al. (2011) .

Please cite this article as: G. Sz ̋oke et al., Empirical study on refactoring large-scale industrial systems and its effects on maintainability,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.08.071

http://quality-gate.com/
http://dx.doi.org/10.1016/j.jss.2016.08.071

Download English Version:

https://daneshyari.com/en/article/4956441

Download Persian Version:

https://daneshyari.com/article/4956441

Daneshyari.com

https://daneshyari.com/en/article/4956441
https://daneshyari.com/article/4956441
https://daneshyari.com

