
The Journal of Systems and Software 127 (2017) 12–27

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Profiling and accelerating commodity NFV service chains with SCC

Georgios P. Katsikas ∗, Gerald Q. Maguire Jr. , Dejan Kosti ́c

KTH Royal Institute of Technology, Stockholm, Sweden

a r t i c l e i n f o

Article history:

Received 3 September 2016

Revised 12 December 2016

Accepted 16 January 2017

Available online 23 January 2017

Keywords:

NFV

Service chains

Profiler

Scheduling

I/O multiplexing

a b s t r a c t

Recent approaches to network functions virtualization (NFV) have shown that commodity network stacks

and drivers struggle to keep up with increasing hardware speed. Despite this, popular cloud network-

ing services still rely on commodity operating systems (OSs) and device drivers. Taking into account the

hardware underlying of commodity servers, we built an NFV profiler that tracks the movement of pack-

ets across the system’s memory hierarchy by collecting key hardware and OS-level performance counters.

Leveraging the profiler’s data, our Service Chain Coordinator’s (SCC) run-time accelerates user-space NFV

service chains, based on commodity drivers. To do so, SCC combines multiplexing of system calls with

scheduling strategies, taking time, priority, and processing load into account. By granting longer time

quanta to chained network functions (NFs), combined with I/O multiplexing, SCC reduces unnecessary

scheduling and I/O overheads, resulting in three-fold latency reduction due to cache and main memory

utilization improvements. More importantly, SCC reduces the latency variance of NFV service chains by

up to 40x compared to standard FastClick chains by making the average case for an NFV chain to perform

as well as the best case. These improvements are possible because of our profiler’s accuracy.

© 2017 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

A cost effective means for network operators to increase qual-

ity of service (QoS) is through placing network functions (NFs)

in the network. These functions provide either basic forwarding

and routing capacities, or in the case of middleboxes, enrich the

dataplane functionality by offering increased security, policy en-

forcement, performance improvements, etc. to the overlay ser-

vices (Carpenter and Brim, 2002). However, to deploy and man-

age traditional middleboxes requires costly capital and operational

expenditures (Sherry et al., 2012). As a result, network opera-

tors and cloud providers have shifted their focus towards network

functions virtualization (NFV) by migrating middlebox functionality

from hardware to software 1 running in commodity, off-the-shelf

servers (European Telecommunications Standards Institute, 2012).

∗ Corresponding author.

E-mail addresses: katsikas@kth.se (G.P. Katsikas), maguire@kth.se (G.Q. Maguire

Jr.), dmk@kth.se (D. Kosti ́c).
1 The NFV Industry Specification Group of the European Telecommunications

Standards Institute (ETSI) has defined NFV-based network functions as “virtual net-

work functions (VNFs)” (ETSI, 2013). In this article we refer to such functions by

using the generic definition “network functions (NFs)”, that does not necessarily re-

quire these functions to be virtualized.

Making NFV-style packet processing (i.e., software-based) per-

form as well as its hardware equivalent (i.e., the hardware im-

plementation of the middlebox device) is hard, mainly because of

poor I/O performance. Therefore, researchers tailor the operating

systems’ (OSs) network stacks and device drivers to achieve line-

rate forwarding and maximize throughput (Rizzo, 2012; Kim et al.,

2012; DPDK, 2016; Bonelli et al., 2012). That is made possible by (i)

enabling zero copy data transfers from the network interface (com-

monly abbreviated as NIC) to user-space (bypassing the kernel), (ii)

pre-allocating memory resources, and (iii) batching packet process-

ing to amortize system call overheads over multiple packets.

Although the aforementioned efforts improve the I/O perfor-

mance of individual NFs, they diverted researchers’ interest from

the source of the problem. Indeed, no prior work analyzed in-depth

the system’s state when commodity NFV applications are execut-

ing, nor have the exact root causes of the observed performance

been quantified or explained . NFV service providers could benefit

from tools that can thoroughly analyze “hot” parts of NFV software

stacks and draw attention to those functions that heavily utilize

system resources, hence offer the greatest potential for accelera-

tion. Such tools can also offer run-time support to allow automated

tuning of the running NFV.

In response, the first contribution of this paper is our NFV pro-

filer that collects data from low-level performance counters from

the underlying NFV infrastructure to track packets as they move

http://dx.doi.org/10.1016/j.jss.2017.01.005

0164-1212/© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://dx.doi.org/10.1016/j.jss.2017.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.01.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:katsikas@kth.se
mailto:maguire@kth.se
mailto:dmk@kth.se
http://dx.doi.org/10.1016/j.jss.2017.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

G.P. Katsikas et al. / The Journal of Systems and Software 127 (2017) 12–27 13

from the NICs to the processors (and vice versa) through the differ-

ent levels of the system’s memory hierarchy. Our profiler decom-

poses the observed per packet latency into components mapped

to the involved hardware components (e.g., caches, main memory)

and associates these components with their cause(s) (i.e., the re-

sponsible pieces of code that cause this latency).

Today, modern services require combinations of NFs, known

as service chains, to satisfy their QoS requirements (Quinn and

Nadeau, 2015). For instance, Amazon offers services that allow ten-

ants to build their own virtual infrastructure by combining func-

tions such as filtering, routing, slicing, and load balancing (Amazon,

2016). In such an environment, even state of the art frameworks

such as ClickOS (Martins et al., 2014) and NetVM (Hwang et al.,

2014) cannot achieve high-performance, as there is a substantial

throughput degradation when interconnecting multiple NFs. 2 Re-

cent effort s, such as E2 (Palkar et al., 2015) and OpenNetVM (Zhang

et al., 2016), overcome this problem by eliminating hypervisor and

paravirtualization overheads via lightweight NFs (e.g., placed in

containers) interconnected with fast, custom software switches.

Unfortunately, these latest advancements have not yet been

adopted by cloud providers and it is unlikely that this will hap-

pen soon, as cloud providers continue to rely on commodity OSs,

I/O drivers, and switching fabrics. Although techniques such as sin-

gle root I/O virtualization (SR-IOV) can bypass the hypervisor and

pass packets from the NICs to the virtual machines (VMs) (Amazon,

2016), cloud applications still use costly system calls to interact

with the NICs. These interactions are frequent and consume a large

fraction of the execution time of an NFV instance.

In the context of chained services, according to our profiler,

I/O is not the only problem, as the length of a service chain

imposes serious scheduling overheads. Part of this problem has

been recently addressed by Sivaraman et al. (2016) with their

programmable packet scheduling techniques in switches and by

Mittal et al. (2016) introduction of packet scheduling algorithms

that roughly meet the requirements of a universal packet sched-

uler. These approaches can affect the order and timing of packet

departures from a queue in a switch or NF, however we sug-

gest a promising alternative direction that is inline with Ama-

zon’s attempts to integrate custom schedulers in their cloud ser-

vices (Amazon, 2016).

In contrast to Sivaraman et al. (2016) ; Mittal et al. (2016) , our

research findings show that a chain of NFs requires a global sched-

uler to make chain-level decisions , rather than an internal sched-

uler that executes local switch policies. To address this gap, we de-

signed and implemented the Service Chain Coordinator (SCC). SCC

adjusts the frequency of I/O operations in tandem with adjusting

the priority and time quanta allotted to each NF by the scheduler,

to maximize the effective run-time of the service chain. In short,

we make the following contributions:

1. We introduce an NFV profiler that collects and analyzes low-

level performance counters in close collaboration with the

hardware and OS. To the best of our knowledge, this is the first

NFV profiler; a key tool for uncovering the underlying perfor-

mance problems of NFV service chains.

2. By exploiting the output of the profiler, our run-time compo-

nent automatically combines multiplexing of system calls and

scheduling re-configurations to accelerate NFV service chains

running on Linux OSs.

We implemented SCC on top of the FastClick NFV frame-

work (Barbette et al., 2015). SCC’s accelerations realize long chains

of user-space NFV service chains, based on commodity device

drivers, with 3x lower latency and 3x better cache, and main mem-

2 Figs. 10 and 12 of the ClickOS and NetVM papers respectively.

Time

Kernel

Service

Chain

NIC

No SCC

I/O I/O I/O

Kernel

Service

Chain

NIC Batch I/O

SCC

NFV Processing

I/O Request

I/O Response

I/O System Call

Task CompletedT

Default Time Quantum/Process = t ms

Extended Time Quantum/Process = k·t ms, k>1

Default

Scheduler

SCC

SchedulerCustom per-core scheduling policy with

high priority

Fair treatment of all tasks

SCC

Launcher

Set batch size

Fig. 1. The SCC run-time combines (i) tailored scheduling for NFV service chains

via the SCC Scheduler with (ii) fewer (but longer) user to/from kernel-space inter-

actions by multiplexing I/O-related system calls via the SCC Launcher. SCC achieves

faster completion time, hence lower latency, than the “No-SCC” case.

ory utilization compared to standard FastClick chains. SCC chains

also achieve multiple orders of magnitude lower latency variance

compared to FastClick; a crucial performance indicator for highly-

interactive services.

In Section 2 , we formulate the research problem and provide a

quantitative summary of our contributions.

2. Problem statement

First, we state our research question and the way to address

this question.

Key Question: What are the reasons that cause user-space NFV

service chains, using commodity OSs and network drivers, to ex-

hibit low performance?

Methodology: In Section 3 we describe an NFV profiler that (i)

utilizes low-level hardware and software performance counters to

track packets as they move across the system’s memory hierarchy,

(ii) measures the per packet latency of the involved hardware com-

ponents (e.g., caches and main memory), and (iii) associates this

latency with the cause(s) (i.e., the responsible pieces of code).

We leverage the profiler’s power to reveal problems in NFV ser-

vice chains and quantify their effects (see Section 4). We acceler-

ate NFV service chains by solving those problems identified by the

profiler via an automated run-time called SCC (see Section 5).

We illustrate the problems and the solutions realized by SCC in

Fig. 1 . The bottom part of this figure, labeled as “No SCC”, shows

a typical way user-space NFV applications based on standard net-

work drivers interact with the NICs via the OS’s kernel. As we show

in Section 4 , this causes two major problems related to the key

question stated above:

Problem 1. The service chain at the bottom part of Fig. 1 requires

frequent, usually per packet, system calls that cause the service

chain to yield the CPU to the OS in order that the latter can per-

form the necessary I/O operations.

Problem 2. The default Linux scheduler is inappropriate for NFV

service chains because it grants short time quanta to the NFV pro-

cesses and treats them as any other process in the system. As a re-

sult, the default Linux scheduler imposes excessive scheduling con-

tention, the latency of which is greater than the actual run-time of

a service chain.

Download English Version:

https://daneshyari.com/en/article/4956449

Download Persian Version:

https://daneshyari.com/article/4956449

Daneshyari.com

https://daneshyari.com/en/article/4956449
https://daneshyari.com/article/4956449
https://daneshyari.com

