
The Journal of Systems and Software 127 (2017) 78–90

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Designing and applying an approach to software architecting in agile

projects in education

S. Angelov

∗, P. de Beer

Software Engineering , Fontys University of Applied Sciences , Postbus 347 , 5600 AH Eindhoven , The Netherlands

a r t i c l e i n f o

Article history:

Received 12 February 2016

Revised 13 January 2017

Accepted 31 January 2017

Available online 1 February 2017

Keywords:

Software architecture

Agile

Scrum

Teaching

Software engineering education

Students

Project

Course

a b s t r a c t

Software architecting activities are not discussed in most agile software development methods. That is

why, the combination of software architecting and agile methods has been in the focus of numerous

publications. However, there is little literature on how to approach software architecting in agile projects

in education. In this paper, we present our approach to the introduction of software architecting activities

in an agile project course. The approach is based on literature sources and is tailored to fit our educa-

tional goals and context. The approach has been applied in two consecutive executions of the course. We

observe improved understanding on the value of architecting activities and appreciation among students

on the combination of architecting activities and agile development. We applied the approach predomi-

nantly in cases with an architecturally savvy Product Owner. Further research is required to understand

how the approach performs in scenarios with architecturally unsavvy Product Owners and if it needs to

be adapted for these scenarios. We also conclude that more research is needed on the challenges that

architects face in agile projects in order to better prepare students for practice.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Software architecting has received ample attention in academia

and industry and many educational institutions address software

architectures in their curricula, (e.g., Garlan et al., 1992 ; Lago and

Van Vliet, 2005 ; Mannisto et al., 2008). However, teaching software

architectures remains a difficult task. It requires a realistic context,

teamwork, sufficient complexity, and substantial coaching (Galster

and Angelov, 2016).

With the increasing popularity of agile software development

methods, the software architecting community has faced a new

challenge. Most agile methods “pay very little attention to com-

mon architectural design activities” (Babar, 2014). For example,

Kent Beck sees architectures as emerging and evolving in the daily

design (Beck, 1999). Kruchten et al. predict that “Software ar-

chitecture will be recognized as a key foundation to agile soft-

ware development” (Kruchten et al., 2006). The question of how

much architectural effort is needed in agile projects was rated as

“the second-equal most burning question facing agile practition-

ers” (Freudenberg and Sharp, 2010). Researchers and practitioners

have embraced this challenge and published approaches, visions,

experiences, surveys on how software architecting can be (or is)

∗ Corresponding author.

E-mail addresses: s.angelov@fontys.nl (S. Angelov), p.debeer@fontys.nl (P. de

Beer).

approached in agile development methods. A general consensus

seems to exist around the value of paying explicit attention to soft-

ware architectures in agile projects. However, there are different

approaches to architecting in agile projects. Jan Bosch states that

the community is switching to a “user-driven architecture work”

from the traditional “quality based architecting” (Mirakhorli and

Cleland-Huang, 2013). Following the agile principles, teams should

focus upfront on the requirements delivering value to the client

rather than on the architecturally significant requirements, accept-

ing that an initial architecture may not be the optimal architec-

ture. He sees the price of constant refactoring acceptable given the

benefits achieved in terms of agility and customer satisfaction. Wa-

terman et al. draw a similar conclusion in their study (Waterman

et al., 2013). Friedrichsen analyses the idea of emergent architec-

ture and concludes that it is a well-suited approach with respect

to elaborating detailed architectures, but it is not adequately sup-

porting critical architecting activities like making of architectural

choices, elaboration of high-level designs, and architecture valida-

tion (Friedrichsen, 2014).

The coupling between agile methods and software architectures

in education has not yet been sufficiently addressed in literature.

Cleland-Huang et al. present an approach to treating software ar-

chitectures in agile projects in education (Cleland-Huang et al.,

2014a). The approach focuses on the architecture design phase in

agile projects and specifically on the role of the stakeholders but

does not address the actual dynamics of an agile project.

http://dx.doi.org/10.1016/j.jss.2017.01.029

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.01.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.01.029&domain=pdf
mailto:s.angelov@fontys.nl
mailto:p.debeer@fontys.nl
http://dx.doi.org/10.1016/j.jss.2017.01.029

S. Angelov, P. de Beer / The Journal of Systems and Software 127 (2017) 78–90 79

In our curriculum, we have a course in which groups of stu-

dents develop a software system using an agile (Scrum-based)

method. One of the skills that they need to demonstrate in this

course is system design. In the past, we have required a software

architecture design and its documentation but did not provide any

guidance on how this had to be done in an agile project. The stu-

dents approached this activity either as an “end-of-project” docu-

mentation activity (in most cases) or as a “Big Design Up Front” ac-

tivity (less common). The former behavior was driven by the agile

principle of working software over comprehensive documentation,

while the latter behavior was influenced by previously acquired

knowledge on software architecting in waterfall projects. Groups

exhibiting the former behavior were unmotivated to deepen on

the software architecture aspects, focusing primarily on the de-

velopment process. The architecture was hastily and superficially

discussed in the teams at the beginning of the projects and doc-

umented at the end of the projects to pass the course with-

out realizing the purpose and benefits of architecting in an agile

project. The lack of a clear approach to software architecting in

agile projects resulted in invalid and unreliable grading of the soft-

ware architecting skills of students.

To improve our course, we design and introduce an approach

to software architecting. In this paper, we present the approach.

An approach to software architecting in agile projects needs to re-

solve the traditional problems of teaching software architectures

(e.g., realistic context, introducing teamwork, sufficient complexity,

substantial coaching). In addition, it has to intertwine architect-

ing and agile activities in a way that does not contradict the agile

principles and practices. Therefore, we design our approach using

publications on software architecting in agile development and on

teaching software architectures, considering at the same time our

educational context. We apply our approach in two consecutive

course instances. This paper is a continuation of our work from

Angelov and de Beer (2015). In this paper, we extend our findings

by providing results from the application of the approach in two

consecutive course executions and improvements to the approach

based on our findings. Furthermore, we discuss the challenges that

require further research by the software architecting research and

education communities.

The paper is structured as follows. In Section 2 , we present our

context, problem, and research approach. In Section 3 , we discuss

our literature findings on the interplay between software architec-

tures and agile methods. In Section 4 , we present our approach. In

Section 5 , we discuss the application of the approach and lessons

learned. We end the paper with conclusions.

2. Context, problem, and research approach

In this section, we describe our context and define our prob-

lem. We discuss literature on teaching software architectures and

show that it does not provide a solution to our problem. Then, we

present our research approach.

2.1. Course context

We analyze our context using the situational factors defined by

Fink: general and specific context, nature of the subject, character-

istics of the learners (Fink, 2013):

• General context : Fontys University of Applied Sciences is the

largest Dutch university of applied sciences. It offers bachelor

and master programs. Being an applied university, its focus is

on teaching practice oriented knowledge and skills. In partic-

ular, it offers a software engineering, bachelor program. Upon

completion of their studies, students from this program are

skilled software engineers. The four-year program consists of 4

semesters of courses, followed by an internship semester, an-

other courses-based semester, a free-choice minor study, and a

final internship (graduation project). Within each courses-based

semester, there is a “project-course” called PTSn (where “n” in-

dicates the number of the semester: PTS2 – second semester,

PTS3 – third semester, etc.). Project-courses apply knowledge

from other courses for the development of a software sys-

tem. The students are introduced to software architectures in

their third semester in a course called GSO3. In PTS3, the stu-

dents develop a software system using a waterfall development

method. They perform requirements elicitation and documen-

tation, architecture elicitation and documentation, implementa-

tion, and testing activities. The students elaborate an architec-

ture document consisting of functional and non-functional re-

quirements, use case, class, sequence, component, and deploy-

ment diagrams.
• Specific context : The course with acronym PTS4 is the focus of

this work. PTS4 is 6 ECTS credits (European Credit Transfer and

Accumulation System). The students work in groups of 5–6 stu-

dents for 20 weeks, one day a week. The students are allowed

to form the groups themselves, which typically leads to bal-

anced groups in terms of skills, interests, and motivation. Our

curriculum implies the application of architecting activities in

PTS4.
• Nature of the subject : PTS4 focuses on applying agile practices

in a Java-based project. It follows mainly the Scrum method,

augmented with practices from other agile methods like Lean

(eliminate waste) and Crystal Clear (osmotic communication,

personal safety). All top 20 agile practices listed in Yang et al.

(2016) are followed except for the “system metaphor”. The fam-

ily of agile methods are thoroughly studied in another course

(BS41) given in parallel to PTS4. On a weekly basis, the stu-

dents are visited by their Product Owner (PO) and Tutor (typi-

cally both roles are performed by one teacher). Scrum Masters

are students from the teams. A commercial tool for agile project

management is used by all groups. The project is divided into

4 iterations (sprints) of 4 weeks.
• Characteristics of the learners :

- Capabilities : Students of applied universities are predomi-

nantly interested in applying knowledge and skills. They are

typically less inclined on reflecting on theoretical aspects of

a problem. However, there are also students with capabili-

ties for deeper reflections.

- Motivation : A student needs to be motivated during the

course for achieving best learning results. The motivation of

our students is influenced by:

◦ realism: overlap between knowledge taught and activi-

ties performed in courses and real-life practices;

◦ purposefulness : having a clear purpose for the knowledge

taught and activities performed in courses;

◦ clarity : unambiguous, easy to understand knowledge

taught and activities performed in courses;

◦ degree of challenge : knowledge and activities that are not

too easy or too difficult.

- Maturity : Typically students are about 20 years old, in the

early stages of their professional development. They are rel-

atively inexperienced in design and architecting activities.

2.2. Problem definition and desired situation

In the old setup of PTS4, we used a case called “PhotoStore”.

The students need to develop an application for ordering of cus-

tomized photos that can be optionally printed on a product (e.g.,

on a T-shirt). The case is realistic, technically challenging, and hav-

ing many features to build. The case lacks novelty and is there-

fore of a somewhat trivial architecture nature: “most projects are

Download English Version:

https://daneshyari.com/en/article/4956453

Download Persian Version:

https://daneshyari.com/article/4956453

Daneshyari.com

https://daneshyari.com/en/article/4956453
https://daneshyari.com/article/4956453
https://daneshyari.com

