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a b s t r a c t 

Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario, 

Hoeffding Trees are an established method for classification. Several extensions exist, including high- 

performing ensemble setups such as online and leveraging bagging. Also, k -nearest neighbors is a popular 

choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite 

stream. 

At the same time, gradient descent methods are becoming increasingly popular, owing in part to the 

successes of deep learning. Although deep neural networks can learn incrementally, they have so far 

proved too sensitive to hyper-parameter options and initial conditions to be considered an effective ‘off- 

the-shelf’ data-streams solution. 

In this work, we look at combinations of Hoeffding-trees, nearest neighbor, and gradient descent methods 

with a streaming preprocessing approach in the form of a random feature functions filter for additional 

predictive power. 

We further extend the investigation to implementing methods on GPUs, which we test on some large 

real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scal- 

ability. 

Our empirical evaluation yields positive results for the novel approaches that we experiment with, high- 

lighting important issues, and shed light on promising future directions in approaches to data-stream 

classification. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

There is a trend towards working with big and dynamic data 

sources. This tendency is clear both in real world applications and 

the academic literature. Many modern data sources are not only 

dynamic but often generated at high speed and must be classi- 

fied in real time. Such contexts can be found in sensor applications 

(e.g., tracking and activity monitoring), demand prediction (e.g., of 

electricity), manufacturing processes, robotics, email, news feeds, 

and social networks. Real-time analysis of data streams is becom- 

ing a key area of data mining research as the number of applica- 

tions in this area grows. 
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The requirements for a classifier in a data stream are to 

• Be able to make a classification at any time 
• Deal with a potentially infinite number of examples 
• Access each example in the stream just once 

These requirements can in fact be met by variety of learn- 

ing schemes, including even batch learners (e.g., Qu et al., 2009 ), 

where batches are constantly gathered over time, and newer mod- 

els replace older ones as memory fills up. Nevertheless, incremen- 

tal methods remain strongly preferred in the data streams liter- 

ature, and particularly the Hoeffding tree (HT) and its variations 

( Domingos and Hulten, 20 0 0; Bifet et al., 2010b ), k -nearest neigh- 

bors ( k NN) ( Shaker and Hüllermeier, 2012 ). Support for these op- 

tions is given by large-scale empirical comparisons ( Read et al., 

2012 ), where it is also found that methods such as naive Bayes and 

stochastic gradient descent-based (SGD) are relatively poor per- 

formers. 
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Classification in data streams is a major area of research, in 

which Hoeffding trees have long been a favored method. The main 

contribution of this paper is to show that random feature function 

can be leveraged by other algorithms to obtain similar or even im- 

proved performance over tree-based methods. 

With the recent popularity of Deep Learning (DL) methods we 

also want to test how a random feature in the form of random 

projection layer performs on Deep Neural Networks (DNNs). 

DL aims for a better data representation at multiple layers of 

abstraction, and for each layer the network needs to be fine-tuned. 

In classification, a common algorithm to fine-tune the network is 

the SGD which tries to minimize the error at the output layer us- 

ing an objective function, such as Mean Squared Error (MSE). A 

Gradient vector is used to back-propagate the error to previous lay- 

ers. This gradient nature of the algorithm makes it suitable to be 

trained incrementally in batches of size one, similar to how incre- 

mental training is done. Unfortunately, DNN are very sensitive to 

hyper-parameters such as learning rate ( η), momentum ( μ), num- 

ber of number neurons per level, or the number of levels. It is then 

not straight forward to provide an of-the-shelf method for data 

streams. 

Propagation between layers is usually done in the form of 

matrix-vector or matrix-matrix multiplications, which are com- 

putational intensive operation. Often hardware accelerators such 

as FPGAs or GPUs are used to accelerate the calculations. De- 

spite some effort s, acceleration of HT and k NN algorithms for data 

streams on the GPUs are has some limitations. We talk briefly 

about this in Section 2 . 

In recent years, Extreme Learning Machines ( Huang, 2015 ) 

(ELMs) have emerged as a popular framework in Machine Learning. 

ELMs are a type of feed-forward neural networks characterized by 

a random initialization of their hidden layer, combined with a fast 

training algorithm. Our random feature method is based on this 

approach. 

We made use of the MOA (Massive Online Analysis) frame- 

work ( Bifet et al., 2010a ), a software environment for implement- 

ing algorithms and running experiments for online learning from 

data streams in Java. It implements a large number of modern 

methods for classification in streams, including HT, k NN, and SGD- 

based methods. We make use of MOA’s extensive library of meth- 

ods to form novel combinations with these methods and further 

employ an extremely rapid preprocessing technique of projecting 

the input into a new space via random feature functions (similar 

to ELMs). We then took the methods purely related to Neural Net- 

works (those which proved most promising under random projec- 

tions) and implemented them using NVIDIA GPUs and CUDA 7.0; 

comparing performance to the methods in MOA. 

This paper is organized as follows: Section 2 introduces related 

work on tree based approaches, neural networks, and data streams 

on GPU. We discuss the use of random features in Sections 3 and 

4 for HT/ k NN methods and neural networks respectively. We first 

present the evaluation of tree-based methods in Section 5 and later 

in Section 6 we extend the SGD method in the form of DNNs, us- 

ing different activation functions. We finally conclude the paper in 

Section 7 . 

2. Related work 

Hoeffding trees ( Domingos and Hulten, 20 0 0 ) are state-of-the- 

art in classification for data streams and they predict by choosing 

the majority class at each leaf. However, these trees may be con- 

servative at first and in many situations naive Bayes method out- 

performs the standard Hoeffding tree initially, although it is even- 

tually overtaken ( Holmes et al., 2005 ). A proposed hybrid adap- 

tive method by Holmes et al. (2005) is a Hoeffding tree with naive 

Bayes at the leaves, i.e., returning a naive Bayes prediction at the 

leaves, if it has been so far more accurate overall than the majority 

class. Given it’s widespread acceptance, this is the default in MOA, 

and we denote this method in the experimental Section simply as 

HT. In fact, the naive Bayes classification comes for free, since it 

can be made with the same statistics that are collected anyway by 

the tree. 

Other established examples include using principal component 

analysis (reviewed also in Hastie et al., 2001 ) for this transfor- 

mation, and also Restricted Boltzmann Machines (RBMs) ( Hinton 

and Salakhutdinov, 2006 ). RBMs can be seen as a probabilistic bi- 

nary version of PCA, for finding higher-level feature representa- 

tions. They have received widespread popularity in recent years 

due to their use in successful deep learning approaches. In this 

case, z = φ(x ) = f (W 

� x ) for some non-linearity f : a sigmoid func- 

tion is typical, but more recently rectified linear units (ReLUs, Nair 

and Hinton, 2010 ) have fallen into favor. The weight matrix W is 

learned with gradient-based methods ( Hinton, 20 0 0 ), and the pro- 

jected output should provide a better feature representation for a 

neural network or any off-the-shelf method. This approach was ap- 

plied to data streams already in Read et al. (2015) , but concluded 

that the sensitivity to hyper-parameters and initial conditions pre- 

vented good ‘out-of-the-box’ deployment in data streams. 

Approaches such as the so-called extreme learning machines 

(ELMs) ( Huang et al., 2011 ) avoid tricky parametrizations by simply 

using random functions (indeed, ELMs are basically linear learn- 

ers on top of non-linear data transformations). Despite the hidden 

layer weights being random , it has been proven that ELMs is still 

capable of universal approximation of any non-constant piecewise 

continuous function ( Huang et al., 2006 ). 

Also an incremental version of ELMs is proposed in bin Huang 

et al. (2008) . It starts with an small network, and new neurons are 

added at each step until an stopping criterion of size or residual 

error is reached. The difference with our incremental build is that 

we use one instance at time simulating they arrive in time, and 

we incrementally train the network. Also our number of neurons 

is fixed during the training, in other words, we don’t add/remove 

any neuron during the process. 

Nowadays, in 2015, it is difficult when talking about DL and 

DNNs not to mention GPUs. They are a massive parallel architec- 

tures providing an outstanding performance for High Performance 

Computing and a very good performance/watt ratio, as their ar- 

chitecture suits very fine to their needs of DNNs computations. 

Many tools include a back-end to offload the computation to the 

GPU. NVIDIA has its own portal for deep learning on GPUs at 

https://developer.nvidia.com/deep-learning . 

GPUs has not only used to accelerate DL/DNN computations due 

to its performance, it has been also been used to successfully ac- 

celerate HT and ensembles. However, few works are provided in 

the context of data streams and GPUs. 

The only work we are aware of regarding to HT in the context 

of online real-time data streams mining is Marron et al. (2014) , 

were the authors present a parallel implementation of HT and Ran- 

dom Forests for binary trees and data streams achieving goods 

speedups, but with limitations on the size and with high memory 

consumption. More generic HT implementation of Random Forests 

is presented in Grahn et al. (2011) . In Schulz et al. (2015) the au- 

thors introduced an open source library, available at github, to pre- 

dict images labeling using random forests. The library is also tested 

their on a cell phone with VGA resolution in real-time with good 

results. 

Also, k NN has already been successfully ported to GPUs ( Garcia 

et al., 2008 ). That paper presented one of the first implemen- 

tations of the “brute force” k NN on GPUs, and compared with 

several CPU-based implementations with speedups up to teo 

orders of magnitude. k NN is also used in business intelligence 

( Huang et al., 2012 ) and has also its implementation on the GPU. 
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