
ARTICLE IN PRESS

JID: JSS [m5G; June 20, 2016;10:19]

The Journal of Systems and Software 0 0 0 (2016) 1–10

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Data stream classification using random feature functions and novel

method combinations

Diego Marrón

a , ∗, Jesse Read

b , c , Albert Bifet c , Nacho Navarro

a

a Department of Computer Architecture, Universitat Politecnica de Catalunya and with the Department of Computer Science, Barcelona Supercomputing

Center, Spain
b Aalto University and HIIT, Finland
c LTCI, CNRS, Télécom Paris Tech

a r t i c l e i n f o

Article history:

Received 30 September 2015

Revised 29 March 2016

Accepted 4 June 2016

Available online xxx

Keywords:

Data stream mining

Big data

Classification

GPUs

a b s t r a c t

Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario,

Hoeffding Trees are an established method for classification. Several extensions exist, including high-

performing ensemble setups such as online and leveraging bagging. Also, k -nearest neighbors is a popular

choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite

stream.

At the same time, gradient descent methods are becoming increasingly popular, owing in part to the

successes of deep learning. Although deep neural networks can learn incrementally, they have so far

proved too sensitive to hyper-parameter options and initial conditions to be considered an effective ‘off-

the-shelf’ data-streams solution.

In this work, we look at combinations of Hoeffding-trees, nearest neighbor, and gradient descent methods

with a streaming preprocessing approach in the form of a random feature functions filter for additional

predictive power.

We further extend the investigation to implementing methods on GPUs, which we test on some large

real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scal-

ability.

Our empirical evaluation yields positive results for the novel approaches that we experiment with, high-

lighting important issues, and shed light on promising future directions in approaches to data-stream

classification.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There is a trend towards working with big and dynamic data

sources. This tendency is clear both in real world applications and

the academic literature. Many modern data sources are not only

dynamic but often generated at high speed and must be classi-

fied in real time. Such contexts can be found in sensor applications

(e.g., tracking and activity monitoring), demand prediction (e.g., of

electricity), manufacturing processes, robotics, email, news feeds,

and social networks. Real-time analysis of data streams is becom-

ing a key area of data mining research as the number of applica-

tions in this area grows.

∗ Corresponding author.

E-mail addresses: dmarron@ac.upc.edu (D. Marrón), jesse.read@telecom-

paristech.fr (J. Read), albert.bifet@telecom-paristech.fr (A. Bifet), nacho@ac.upc.edu

(N. Navarro).

The requirements for a classifier in a data stream are to

• Be able to make a classification at any time
• Deal with a potentially infinite number of examples
• Access each example in the stream just once

These requirements can in fact be met by variety of learn-

ing schemes, including even batch learners (e.g., Qu et al., 2009),

where batches are constantly gathered over time, and newer mod-

els replace older ones as memory fills up. Nevertheless, incremen-

tal methods remain strongly preferred in the data streams liter-

ature, and particularly the Hoeffding tree (HT) and its variations

(Domingos and Hulten, 20 0 0; Bifet et al., 2010b), k -nearest neigh-

bors (k NN) (Shaker and Hüllermeier, 2012). Support for these op-

tions is given by large-scale empirical comparisons (Read et al.,

2012), where it is also found that methods such as naive Bayes and

stochastic gradient descent-based (SGD) are relatively poor per-

formers.

http://dx.doi.org/10.1016/j.jss.2016.06.009

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: D. Marrón et al., Data stream classification using random feature functions and novel method combinations,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.009

http://dx.doi.org/10.1016/j.jss.2016.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:dmarron@ac.upc.edu
mailto:jesse.read@telecom-paristech.fr
mailto:albert.bifet@telecom-paristech.fr
mailto:nacho@ac.upc.edu
http://dx.doi.org/10.1016/j.jss.2016.06.009
http://dx.doi.org/10.1016/j.jss.2016.06.009

2 D. Marrón et al. / The Journal of Systems and Software 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: JSS [m5G; June 20, 2016;10:19]

Classification in data streams is a major area of research, in

which Hoeffding trees have long been a favored method. The main

contribution of this paper is to show that random feature function

can be leveraged by other algorithms to obtain similar or even im-

proved performance over tree-based methods.

With the recent popularity of Deep Learning (DL) methods we

also want to test how a random feature in the form of random

projection layer performs on Deep Neural Networks (DNNs).

DL aims for a better data representation at multiple layers of

abstraction, and for each layer the network needs to be fine-tuned.

In classification, a common algorithm to fine-tune the network is

the SGD which tries to minimize the error at the output layer us-

ing an objective function, such as Mean Squared Error (MSE). A

Gradient vector is used to back-propagate the error to previous lay-

ers. This gradient nature of the algorithm makes it suitable to be

trained incrementally in batches of size one, similar to how incre-

mental training is done. Unfortunately, DNN are very sensitive to

hyper-parameters such as learning rate (η), momentum (μ), num-

ber of number neurons per level, or the number of levels. It is then

not straight forward to provide an of-the-shelf method for data

streams.

Propagation between layers is usually done in the form of

matrix-vector or matrix-matrix multiplications, which are com-

putational intensive operation. Often hardware accelerators such

as FPGAs or GPUs are used to accelerate the calculations. De-

spite some effort s, acceleration of HT and k NN algorithms for data

streams on the GPUs are has some limitations. We talk briefly

about this in Section 2 .

In recent years, Extreme Learning Machines (Huang, 2015)

(ELMs) have emerged as a popular framework in Machine Learning.

ELMs are a type of feed-forward neural networks characterized by

a random initialization of their hidden layer, combined with a fast

training algorithm. Our random feature method is based on this

approach.

We made use of the MOA (Massive Online Analysis) frame-

work (Bifet et al., 2010a), a software environment for implement-

ing algorithms and running experiments for online learning from

data streams in Java. It implements a large number of modern

methods for classification in streams, including HT, k NN, and SGD-

based methods. We make use of MOA’s extensive library of meth-

ods to form novel combinations with these methods and further

employ an extremely rapid preprocessing technique of projecting

the input into a new space via random feature functions (similar

to ELMs). We then took the methods purely related to Neural Net-

works (those which proved most promising under random projec-

tions) and implemented them using NVIDIA GPUs and CUDA 7.0;

comparing performance to the methods in MOA.

This paper is organized as follows: Section 2 introduces related

work on tree based approaches, neural networks, and data streams

on GPU. We discuss the use of random features in Sections 3 and

4 for HT/ k NN methods and neural networks respectively. We first

present the evaluation of tree-based methods in Section 5 and later

in Section 6 we extend the SGD method in the form of DNNs, us-

ing different activation functions. We finally conclude the paper in

Section 7 .

2. Related work

Hoeffding trees (Domingos and Hulten, 20 0 0) are state-of-the-

art in classification for data streams and they predict by choosing

the majority class at each leaf. However, these trees may be con-

servative at first and in many situations naive Bayes method out-

performs the standard Hoeffding tree initially, although it is even-

tually overtaken (Holmes et al., 2005). A proposed hybrid adap-

tive method by Holmes et al. (2005) is a Hoeffding tree with naive

Bayes at the leaves, i.e., returning a naive Bayes prediction at the

leaves, if it has been so far more accurate overall than the majority

class. Given it’s widespread acceptance, this is the default in MOA,

and we denote this method in the experimental Section simply as

HT. In fact, the naive Bayes classification comes for free, since it

can be made with the same statistics that are collected anyway by

the tree.

Other established examples include using principal component

analysis (reviewed also in Hastie et al., 2001) for this transfor-

mation, and also Restricted Boltzmann Machines (RBMs) (Hinton

and Salakhutdinov, 2006). RBMs can be seen as a probabilistic bi-

nary version of PCA, for finding higher-level feature representa-

tions. They have received widespread popularity in recent years

due to their use in successful deep learning approaches. In this

case, z = φ(x) = f (W

� x) for some non-linearity f : a sigmoid func-

tion is typical, but more recently rectified linear units (ReLUs, Nair

and Hinton, 2010) have fallen into favor. The weight matrix W is

learned with gradient-based methods (Hinton, 20 0 0), and the pro-

jected output should provide a better feature representation for a

neural network or any off-the-shelf method. This approach was ap-

plied to data streams already in Read et al. (2015) , but concluded

that the sensitivity to hyper-parameters and initial conditions pre-

vented good ‘out-of-the-box’ deployment in data streams.

Approaches such as the so-called extreme learning machines

(ELMs) (Huang et al., 2011) avoid tricky parametrizations by simply

using random functions (indeed, ELMs are basically linear learn-

ers on top of non-linear data transformations). Despite the hidden

layer weights being random , it has been proven that ELMs is still

capable of universal approximation of any non-constant piecewise

continuous function (Huang et al., 2006).

Also an incremental version of ELMs is proposed in bin Huang

et al. (2008) . It starts with an small network, and new neurons are

added at each step until an stopping criterion of size or residual

error is reached. The difference with our incremental build is that

we use one instance at time simulating they arrive in time, and

we incrementally train the network. Also our number of neurons

is fixed during the training, in other words, we don’t add/remove

any neuron during the process.

Nowadays, in 2015, it is difficult when talking about DL and

DNNs not to mention GPUs. They are a massive parallel architec-

tures providing an outstanding performance for High Performance

Computing and a very good performance/watt ratio, as their ar-

chitecture suits very fine to their needs of DNNs computations.

Many tools include a back-end to offload the computation to the

GPU. NVIDIA has its own portal for deep learning on GPUs at

https://developer.nvidia.com/deep-learning .

GPUs has not only used to accelerate DL/DNN computations due

to its performance, it has been also been used to successfully ac-

celerate HT and ensembles. However, few works are provided in

the context of data streams and GPUs.

The only work we are aware of regarding to HT in the context

of online real-time data streams mining is Marron et al. (2014) ,

were the authors present a parallel implementation of HT and Ran-

dom Forests for binary trees and data streams achieving goods

speedups, but with limitations on the size and with high memory

consumption. More generic HT implementation of Random Forests

is presented in Grahn et al. (2011) . In Schulz et al. (2015) the au-

thors introduced an open source library, available at github, to pre-

dict images labeling using random forests. The library is also tested

their on a cell phone with VGA resolution in real-time with good

results.

Also, k NN has already been successfully ported to GPUs (Garcia

et al., 2008). That paper presented one of the first implemen-

tations of the “brute force” k NN on GPUs, and compared with

several CPU-based implementations with speedups up to teo

orders of magnitude. k NN is also used in business intelligence

(Huang et al., 2012) and has also its implementation on the GPU.

Please cite this article as: D. Marrón et al., Data stream classification using random feature functions and novel method combinations,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.009

https://developer.nvidia.com/deep-learning
http://dx.doi.org/10.1016/j.jss.2016.06.009

Download English Version:

https://daneshyari.com/en/article/4956461

Download Persian Version:

https://daneshyari.com/article/4956461

Daneshyari.com

https://daneshyari.com/en/article/4956461
https://daneshyari.com/article/4956461
https://daneshyari.com

