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a b s t r a c t 

Gaussian Process is a theoretically rigorous model for prediction problems. One of the deficiencies of 

this model is that its original exact inference algorithm is computationally intractable. Therefore, its ap- 

plications are limited in the field of real-time online predictions. In this paper, a recursive prediction 

algorithm based on the Gaussian Process model is proposed. In recursive algorithms, the computational 

time of the next step can be greatly reduced by utilizing the intermediate results of the current step. The 

proposed recursive algorithm accelerates the prediction and avoids the loss of accuracy at the same time. 

Experiments are done on an ultra-short term electric load data set and the results are demonstrated to 

show the accuracy and efficiency of the new algorithm. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The Gaussian Process (GP) model has been widely investigated 

in the past decade in machine learning ( Rasmussen and Williams, 

2006; Rasmussen and Nickisch, 2010 ). It has also been adopted 

in many application studies to solve the problems of real-time 

data prediction for complex dynamic systems such as power load 

forecast ( Zhang et al., 2011; Niu et al., 2010 ) and ozone concen- 

tration forecast ( Petelin et al., 2013 ). Though it is a theoretically 

rigorous model, the applications in industry are limited due to 

the high computational complexity of its inference method, es- 

pecially when the size of the training data set is increasingly 

large. 

Many approximate inference algorithms for the Gaussian Pro- 

cess model are proposed in the recent years to solve this prob- 

lem. These approximate methods reduce the running time at the 

cost of lower predict accuracy. Some of the approximate algo- 

rithms re-sample the data sets and eliminate those less informa- 

tive data points ( Cao et al., 2013 ). And some other algorithms use 

the sparse techniques to reduce the rank of the covariance ma- 

trix ( Gittens and Mahoney, 2013 ). All of these approximate algo- 

rithms discard the less informative elements in the Gaussian Pro- 

cess model to simplify the computation. However, how to deter- 

mine the less informative elements itself is time consuming. On 

the other hand, some of these methods require fixed data sets thus 
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cannot perform well on the task of online prediction for dynamic 

systems. 

Another way to speed up the computation for large data sets 

is to use the recursive methods. Recursive algorithms are widely 

used in real-time prediction problems. The most basic recursive 

algorithm is the well-known Recursive Least Square (RLS) method 

( Ljung, 1998 ). The current step will be calculated by using the in- 

termediate results of the previous step or steps in the recursive al- 

gorithms. Similarly, in the proposed algorithm in this paper, most 

of the computational intensive operations on the increasingly large 

data matrices will be avoided by updating them from the results 

of the previous steps. 

However, building the recursive inference algorithm for general 

Gaussian Process model is not an easy task. Because there are var- 

ious choices for the covariance function which will decide the ma- 

jor properties of a specific GP model. Since non-stationary outputs 

are quite common in dynamic systems, we will focus on the GP 

model with the linear trend covariance function which is effective 

for the non-stationary problems in this paper. In addition, one of 

the initial motivations of this work is to solve the prediction prob- 

lems for the ultra-short term power load series, which is also typ- 

ically non-stationary. 

The basics of the Gaussian Process model and its online predic- 

tion problem will be introduced and formulated in Section 2 . The 

recursive GP inference algorithm will be developed in Section 3 . 

Related works are discussed in Section 4 . And the Experiments will 

be presented in Section 5 . The RNSGP algorithm proposed in this 

paper can be taken as the recursive improvement of the FNSGP al- 

gorithm appears in our conference paper ( Zhang and Luo, 2014a ). 
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2. Preliminaries 

2.1. Gaussian Process 

The Gaussian Process (GP) method constructs a model: 

y t = f ( x t ) + e t (1) 

from the data set { ( x t , y t ) | t = 1 , . . . , n } . In time series problems, 

the feature vector x t is composed of the history data, x t = 

[ y t−1 , . . . , y t−d ] , where d is a manually selected constant. y t is the 

corresponding scalar output. e t is additive white noise with the 

Gaussian distribution e (t) ∼ N(0 , σ 2 
n ) . 

For a new input vector x ∗, the joint distribution of the new out- 

put y ∗ and the history data Y = [ y 1 , y 2 , . . . , y n ] 
T is [

Y 
y ∗

]
∼ N 

(
0 , 

[
K(X, X ) + σ 2 

n I k ( x ∗, X ) 
k 

T ( x ∗, X ) k ( x ∗, x ∗) 

])
(2) 

where k ( ·, ·) is the covariance function. Matrix K is called the Gram 

matrix whose elements are K i j = k ( x i , x j ) , and X = [ x 1 , x 2 , . . . , x N ] 
T , 

k ( x ∗, X ) = [ k ( x ∗, x 1 ) , k ( x ∗, x 2 ) , . . . , k ( x ∗, x N )] 
T 

. 

If the noises are not white, we can substitute the identity ma- 

trix I with the auto-covariance matrix of the noise e t . Discussions 

of the Gaussian Process model with ARMA noises can be found in 

Murray-Smith and Girard (2001) . 

The expected value and the variance of y ∗ can be obtained by 

the joint Gaussian distribution as: 

ˆ y ∗ = k 

T ( x ∗, X ) (K(X, X ) + σ 2 
n I) 

−1 Y (3) 

V ar( y ∗) = k ( x ∗, x ∗) − k 

T ( x ∗, X ) (K(X, X ) + σ 2 
n I) 

−1 k ( x ∗, X ) (4) 

Only the one-step-ahead prediction problems will be focused in 

this paper. In the s -steps-ahead prediction problems where s > 1, 

the feature vectors can be written as: 

x t = [ y t−s , . . . , y t−d−s +1 ] 
T . 

Alternatively, if the predicted values are used in the feature vec- 

tor in multiple-steps-ahead prediction problems, the issue of un- 

certainty propagation should be concerned ( Girard et al., 2003 ). 

2.2. Non-stationary covariance function 

One can chose a variety of covariance functions to fit the data 

generated from systems with diverse properties. Covariance func- 

tion is the most important component in the GP model and the 

prediction results can be significantly affected by this choice. 

The most frequently used covariance function is the Squared 

Exponential covariance function: 

k se = e −‖ x i −x j ‖ 2 

It models the covariance value between two data points by their 

Euclidean distance in the feature space with the negative expo- 

nential function. It works well for stationary sequences but fails 

for the non-stationary data. Many real-time prediction problems 

have non-stationary outputs. The Linear Trend covariance functions 

( Brahim-Belhouari and Bermak, 2004 ) are always used in the Gaus- 

sian Process models for non-stationary time series: 

k lt ( x i , x j ) = x i 
T x j (5) 

where x T 
i 

x j is the inner product of the feature vectors x i and 

x j . Similarly, the weighted version of the Linear Trend covariance 

function can be written as: 

k wlt ( x i , x j ) = x i 
T L x j (6) 

where L is a d × d diagonal matrix whose diagonal entries are 

l 1 , . . . , l d . Note that the corresponding features with larger weights 

will have bigger contributions to the final prediction results. 

The diagonal elements of the matrix L are also called the hyper- 

parameters of the Gaussian Process model, and they can be learned 

from the training data by optimizing a most likelihood problem. 

This procedure has also been named as the Automatic Relevance 

Determination (ARD). The hyper-parameter vector can be written 

in together with the noise variance as: 

θ = [ l 1 , . . . , l d , σ
2 
n ] 

If X n , Y n are the training data for the hyper-parameters estima- 

tion, the log likelihood function can be written as: 

log p( Y n | X n , θ ) = −1 

2 

Y T n (K n + σ 2 
n I) Y n 

− 1 

2 

log | K n + σ 2 
n I| − n 

2 

log 2 π (7) 

The optimal estimation can be obtained by: 

ˆ θ = arg max 
θ

( log p(Y n | X n , θ )) (8) 

In the above equations, the Gram matrix K ( X n , X n ) are writ- 

ten as K n for simplicity, and the variance of the additive noise σ 2 
n 

is also estimated in together with the hyper-parameters. Iterative 

methods, such as conjugate gradient, can be used to solve the most 

likelihood estimation (MLE) problem in (8) . 

Note that the Gaussian Process model is a non-parametric 

model, so the hyper-parameter learning step is equivalent to the 

model selection step in those parametric models. And the predic- 

tion inference step in the non-parametric GP model, which will be 

discussed in the next subsection, corresponds to another two steps 

in the parametric models, namely the parameters estimation step 

and the prediction inference step. 

3. Recursive algorithm 

Computational time complexity is an important issue in the 

real-time online forecast problems. The predictions should be cal- 

culated in a limited time which is significantly shorter than the 

sample interval. In addition, the number of training data n in- 

creases with time in most online problems. One solution is to 

abandon the old data points by using a moving window. But more 

often, we want to keep all the data points for future predictions. 

The time cost of the standard inference method for the Gaussian 

Process model ( Rasmussen and Williams, 2006 ) increases rapidly 

with the number of data points ( o ( n 3 )). Constructing a recursive 

algorithm is an effective way to solve this problem. 

The new algorithm is presented in Table 1 at the end of this 

section. In order to give the readers a more clear perspective, 

we divided the algorithm construction into three parts. Part 1 in 

Section 3.1 reformulate the original calculation by matrix inversion 

lemma, which corresponds to line 7–9 and 11–12 in Table 1 . Part 

3 in Section 3.3 is the recursive update parts, which corresponds 

to line 1–5 in Table 1 . Part 2 in Section 3.2 serves as a connection 

between part 1 and 2. And it corresponds to algorithm line 6 and 

10. We also summarize the derivations in part 1 as Lemma 1 and 

Lemma 2 , the update procedure in part 3 as Lemma 4 and 5 , and 

the matrix decomposition in part 2 as Lemma 3 . The above lem- 

mas are finally gathered into Theorem 1 in Section 3.4 . 

In this paper, we focus on the prediction of y n +1 , the output 

at the (n + 1) th step, from the results of the n th step. First, we 

update the feature vector of the new step, x n +1 , by: 

x n +1 = [ y n , y n −1 , . . . , y n −d+1 ] 
T 

The data matrices X n and Y n can also be updated as: 

Y n = [ y n Y 
T 

n −1 ] 
T (9) 

X n = [ x n X 

T 
n −1 ] 

T (10) 
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