
ARTICLE IN PRESS

JID: JSS [m5G; August 11, 2016;11:47]

The Journal of Systems and Software 0 0 0 (2016) 1–18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Research paper

Proactive elasticity and energy awareness in data stream processing

Tiziano De Matteis, Gabriele Mencagli ∗

Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy

a r t i c l e i n f o

Article history:

Received 29 September 2015

Revised 19 June 2016

Accepted 7 August 2016

Available online xxx

Keywords:

Data stream processing

Elasticity

Model predictive control

Frequency scaling

a b s t r a c t

Data stream processing applications have a long running nature (24 hr/7 d) with workload conditions

that may exhibit wide variations at run-time. Elasticity is the term coined to describe the capability of

applications to change dynamically their resource usage in response to workload fluctuations. This paper

focuses on strategies for elastic data stream processing targeting multicore systems. The key idea is to ex-

ploit Model Predictive Control , a control-theoretic method that takes into account the system behavior over

a future time horizon in order to decide the best reconfiguration to execute. We design a set of energy-

aware proactive strategies, optimized for throughput and latency QoS requirements, which regulate the

number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS)

support offered by modern multicore CPUs. We evaluate our strategies in a high-frequency trading ap-

plication fed by synthetic and real-world workload traces. We introduce specific properties to effectively

compare different elastic approaches, and the results show that our strategies are able to achieve the best

outcome.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Data Stream Processing (Andrade et al., 2014) (hereinafter DaSP)

is a computing paradigm enabling the online analysis of live data

streams processed under strict Quality of Service (QoS) require-

ments. These applications usually provide real-time notifications

and alerts to the users in domains like environmental monitoring,

high-frequency trading, network intrusion detection and social me-

dia.

Elasticity in DaSP is a vivid and recent research field. It con-

sists in providing mechanisms to adapt the used resources in cases

in which the workload fluctuates intensively. Such mechanisms are

able to scale up/down the used resources on demand, based on

the actual monitored performance (Gedik et al., 2014). This prob-

lem has been studied in the last years, with works proposing elas-

tic approaches both for single nodes and distributed environments

(Gulisano et al., 2012; Fernandez et al., 2013; Heinze et al., 2014).

A review of these solutions is described in Section 6 .

This paper provides advanced strategies that fill missing as-

pects of the existing work. Most of the elastic supports are reactive

(Gulisano et al., 2012; Fernandez et al., 2013; Heinze et al., 2014;

Kumbhare et al., 2014), i.e. they take corrective actions based on

the actual QoS measurements. In this paper we present predictive

∗ Corresponding author.

E-mail addresses: dematteis@di.unipi.it (T. De Matteis), mencagli@di.unipi.it (G.

Mencagli).

strategies that try to anticipate QoS violations. Furthermore, most

of the existing approaches (see Section 6) are throughput-oriented

and do not take into account explicitly the processing latency as

the main parameter to trigger reconfigurations. In this paper we

propose strategies that address both throughput and latency con-

straints. Finally, the existing approaches do not face energy/power

consumption issues. In this paper we tackle this problem by tar-

geting multicore CPUs with Dynamic Voltage and Frequency Scaling

(DVFS) support.

The proactivity of our approach has been enforced using

a control-theoretic method known as Model Predictive Control

(Camacho and Bordons, 2007) (MPC), in which the system behavior

over a future time horizon is accounted for deciding the best re-

configurations to execute. As far as we know, this is the first time

that MPC has been used in the DaSP domain.

A first version of this work has been published in Ref. De Mat-

teis and Mencagli (2016) . This paper extends this preliminary

work by presenting two energy-aware strategies with differ-

ent resource/power usage characteristics: the first targets high-

throughput , while the second is oriented toward low-latency work-

load. Furthermore, we provide a detailed analysis of our runtime

mechanisms for elasticity and a comparison with state-of-the-art

techniques. Finally, in this paper we specifically study the complex-

ity issues related to the online execution of our adaptation strate-

gies by presenting a Branch & Bound approach to deal with this

problem.

http://dx.doi.org/10.1016/j.jss.2016.08.037

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: T. De Matteis, G. Mencagli, Proactive elasticity and energy awareness in data stream processing, The Journal of

Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.08.037

http://dx.doi.org/10.1016/j.jss.2016.08.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:dematteis@di.unipi.it
mailto:mencagli@di.unipi.it
http://dx.doi.org/10.1016/j.jss.2016.08.037
http://dx.doi.org/10.1016/j.jss.2016.08.037

2 T. De Matteis, G. Mencagli / The Journal of Systems and Software 0 0 0 (2016) 1–18

ARTICLE IN PRESS

JID: JSS [m5G; August 11, 2016;11:47]

REPLICA 1

REPLICA n

input
stream

output
stream

X Y

Partitioned-stateful
Operator

results

hash-based
distribution

m : K → [1, n]

results with the
same key are

ordered

.

.

.

m(η(·)) = 1 State of the
replica

State of the
replica

SPLITTER MERGER

Fig. 1. Parallel partitioned-stateful operator: all the tuples with the same key are routed to the same replica.

The outline of this paper is the following. Section 2 pro-

vides a brief overview of DaSP. Section 3 describes our strategies.

Section 4 shows the details of the reconfiguration mechanisms.

Section 5 analyzes our strategies and compares them with the

state-of-the-art. Finally, Section 6 reviews similar research works

and Section 7 concludes this paper.

2. Overview of data stream processing

DaSP applications are structured as data-flow graphs

(Andrade et al., 2014) of core functionalities, where vertices

represent operators connected by arcs modeling data streams , i.e.

unbounded sequences of data items (tuples).

Important in DaSP are stateful operators (Andrade et al.,

2014) that maintain an internal state while processing input tu-

ples. A typical case is represented by partitioned-stateful operators

(Andrade et al., 2014), which are applied when the input stream

conveys tuples belonging to different logical substreams. In that

case, the operator can maintain a different internal state for each

substream. Examples are operators that process network traces

partitioned by IP address, or market feeds partitioned by a stock

symbol attribute.

Owing to the fact that the significance of each input tuple is

often time-decaying, the internal state can be represented by the

most recent portion of each substream stored in a sliding window

(Andrade et al., 2014). The window boundaries can be (time-based)

or (count-based).

2.1. Intra-operator parallelism

In this work we study elasticity for parallel partitioned-stateful

operators, which represent the target of the most recent research

(Gedik et al., 2014; Gedik, 2014). A parallel operator is composed of

several functionally equivalent replicas (Andrade et al., 2014) that

handle a subset of the input tuples, as sketched in Fig. 1 .

The operator receives a stream of tuples X = { x 1 , x 2 , . . . } and

produces a stream of results Y = { y 1 , y 2 , . . . } . For each tuple x i ∈ X ,

let η(x i) ∈ K be the value of a partitioning key attribute, where

K is the domain of the keys. For each key k ∈ K, p k ∈ [0, 1] de-

notes its relative frequency. The replicas are interfaced with the

input and the output streams through the splitter and the merger

functionalities. The first is responsible for routing each input tu-

ple to the corresponding replica using a (hash) routing function

m : K → [1 , n] , where n is the number of replicas. The merger col-

lects results from the replicas and transmits them onto the output

stream.

All the tuples with the same key are processed sequentially by

the same replica in the arrival order. Therefore, no lock is needed

to protect the state partitions since each partition is accessed ex-

clusively by the same replica. Furthermore, this solution allows the

ordering of results within the same group to be preserved (this can

be a necessary property depending on the application semantics).

2.2. Motivations for elastic scaling

Real-world stream processing applications are characterized by

highly variable execution scenarios. The dynamicity can be de-

scribed in terms of three different factors:

1. (D1) variability of the stream pressure : the input rate can exhibit

large up/down fluctuations;

2. (D2) variability of the key distribution : the frequency of the keys

{ p k } k ∈K can be time-varying, making load balancing impossible

to be achieved statically;

3. (D3) variable processing time per input tuple that may change

during the application lifetime. This is possible for different rea-

sons like the current system availability (sharing between appli-

cations), or for endogenous causes related to the elastic opera-

tor, e.g., the processing time may be dependent on the number

of tuples maintained in the window to be processed.

Applications must tolerate these variability issues in order to

keep the operator QoS optimized according to some user criteria.

Our strategies will be designed to optimize two performance as-

pects: i) throughput , i.e. the number of results delivered per time

unit; ii) latency (or response time), i.e. the time elapsed from the

reception of a tuple triggering the operator internal processing

logic and the delivering of the corresponding result.

To achieve the needed QoS, one could think to configure the

operator in such a way as to sustain the peak load (e.g., the high-

est expected arrival rate) by using all the available resources at

the maximum CPU frequency supported by the hardware. How-

ever, this solution may be very expensive both in distributed en-

vironments (number of machines turned on) and on single nodes

(too high power consumption). The goal of any elastic support is to

meet the application-dependent QoS specifications with high prob-

ability by keeping the operating cost within an affordable range. To

this end, we target strategies able to modify the following config-

uration parameters of an elastic operator: i) the number of cores

Please cite this article as: T. De Matteis, G. Mencagli, Proactive elasticity and energy awareness in data stream processing, The Journal of

Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.08.037

http://dx.doi.org/10.1016/j.jss.2016.08.037

Download English Version:

https://daneshyari.com/en/article/4956470

Download Persian Version:

https://daneshyari.com/article/4956470

Daneshyari.com

https://daneshyari.com/en/article/4956470
https://daneshyari.com/article/4956470
https://daneshyari.com

