
The Journal of Systems and Software 128 (2017) 56–71

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Experimentally assessing the combination of multiple visualization

strategies for software evolution analysis

Renato Novais a , c , ∗, José Amancio Santos b , Manoel Mendonça

c

a Federal Institute of Bahia, Salvador-Bahia, Brazil
b State University of Feira de Santana, Feira de Santana-Bahia, Brazil
c Fraunhofer Project Center at UFBA, Salvador-Bahia, Brazil

a r t i c l e i n f o

Article history:

Received 10 August 2016

Revised 13 February 2017

Accepted 7 March 2017

Available online 9 March 2017

Keywords:

Visual strategies

Software evolution visualization

Experimental evaluation

a b s t r a c t

Software engineers need to comprehend large amounts of data to maintain software. Software Visualiza-

tion is an area that helps users to analyze software through the use of visual resources. It can be effec-

tively used to understand the large amount of data produced during software evolution. A key challenge

in the area is to create strategies to consistently visualize the many software attributes, modules and

versions produced during its lifecycle. Most of the current visualization strategies seek to present data

as a whole, including all available versions of the software in one visual scene. The area lacks strategies

visualizing software in detail through the analysis of the evolution of specific software modules. Both

strategies are useful, and should be selected according to the task at hand. This work focuses on combin-

ing software evolution visualization strategies, experimentally validating the benefits of the approach. Its

goal was to build empirical evidence on the use of the combined multiple strategies for software evolu-

tion comprehension. It presents an experimental study that exploits the benefits of combining multiple

visual strategies of software evolution analysis. The results show that combined visualization strategies

perform better in terms of correctness and analysis time.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Software Evolution has been highlighted as one of the most

important topics in software engineering. During software evolu-

tion, software engineers need to comprehend large amounts of

data. Software Visualization is the area of software engineering

that aims to help users to understand the software through the

use of visual resources. Our work starts from the premise that soft-

ware visualization can be effectively used to analyze and under-

stand the large amount of data produced during software evolution

(Voinea, 2007 ; Novais and de Mendonça Neto, 2014). A key chal-

lenge in the area is creating strategies to visualize many software

versions, modules (packages, classes and methods), and attributes

(e.g. metrics) in a two-dimensional computer screen (Novais et al.,

2013a).

Currently, software evolution visualization (SEV) approaches fo-

cus on presenting data as a whole, including all available versions,

showing general information about the evolution process without

∗ Corresponding author at: Rua Emídio dos Santos, s/n – Barbalho, CEP 40301-

015, Salvador-Bahia, Brazil

E-mail addresses: renatonovais@gmail.com , renato@ifba.edu.br (R. Novais),

zeamancio@ecomp.uefs.br (J.A. Santos), manoel.mendonca@ufba.br (M. Mendonça).

giving access to fine-grained module information (Gall et al., 1999 ;

D’Ambros and Lanza, 2009 ; Antoniol et al., 1999 ; Godfrey and

Tu, 2001). Nonetheless, most software engineering tasks require

access to detailed information on software modules and subsys-

tems. Furthermore, analyzing all versions at the same time goes

against the current state of the practice, which usually focuses on

the distinction between two sequential versions.

In previous works (Novais et al., 2013a ; Novais and de Men-

donça Neto, 2014), we defined the term visual strategies of analysis

as the way the visualization is used to portray software evolution.

Five strategies were divided into two main types: Temporal and

Differential strategies. Tem poral Strategies represent the evolution

considering several of the available versions for analysis. Differen-

tial Strategies take into consideration only two versions to ana-

lyze evolution at a given time. They are both important, since each

one has benefits and shortcomings in terms of visualizing software

evolution. It is, thus, critical to combine them in a systematic way.

However, the few works that explore this issue fails to: (i) high-

light the importance of the combination; (ii) show the coordina-

tion and navigation between views; and most importantly, (iii) val-

idate it experimentally.

In the past six years, we have been incrementally working

on an infrastructure, called SourceMiner Evolution, which sup-

http://dx.doi.org/10.1016/j.jss.2017.03.006

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.03.006&domain=pdf
mailto:renatonovais@gmail.com
mailto:renato@ifba.edu.br
mailto:zeamancio@ecomp.uefs.br
mailto:manoel.mendonca@ufba.br
http://dx.doi.org/10.1016/j.jss.2017.03.006

R. Novais et al. / The Journal of Systems and Software 128 (2017) 56–71 57

ports multiple SEV strategies. It has been used for different pur-

poses, such as the comprehension of software structure evolution

(Novais et al., 2011) and feature evolution (Novais et al., 2012a,

2013b), using a Differential Strategy (Novais et al., 2011).

In a controlled experiment for feature evolution analysis, which

we will call the previous experiment , we compared the differential

visualization strategy against an approach based on the Concern

Mapper tool (Robillard and Weigand-Warr, 2005). The experiment

showed that the visualization approach performed significantly

better in terms of correctness, but only slightly better in terms of

execution time (Novais et al., 2012a). Based on these observations,

we built a new visualization supporting a temporal analysis strat-

egy, and integrated it to the infrastructure (Novais et al., 2012b).

This paper reports an experimental study that we ran to vali-

date the benefits of the differential and temporal strategies com-

bination. Our goal was to build empirical evidence on the use of

the combined multiple strategies for software evolution compre-

hension, and strength the results obtained in the previous exper-

iment. Using the extended version of the tool at three different

sites, the participants of the experiment had to perform program

comprehension related to feature extraction on the top of five ver-

sions of a large-scale software project. The results show that the

combined visualization strategies perform better both in terms of

correctness and in terms of execution time.

The remainder of this paper is organized as follows.

Section 2 presents the background and related work.

Section 3 presents the SourceMiner Evolution tool, addressing

its views, strategies of analysis and how it can be used to sup-

port feature evolution comprehension. Section 4 presents the

experimental procedures for the experiment. Section 5 discusses

the results of the experiment. Section 6 shows the main findings

of the study and analyzes the findings. Section 7 considers the

threats to the validity of this research. Finally, Section 8 presents a

summary of the work and the directions for future work.

2. Background and related work

This section firstly reviews two topics related to work: Software

Evolution Visualization (Section 2.1) and Visual Strategies of Analy-

sis (Section 2.2). Secondly, on Section 2.3 , it discusses related work

that, like ours, combines visual strategies for software analysis.

2.1. Software evolution visualization

In the context of software development, the use of visualization

mechanisms has become more and more important. This is largely

due to the large amount of information associated to the evolu-

tion of a software system. This type of information can be summa-

rized and represented by different visual paradigms (Keim, 2002 ;

Ferreira de Oliveira and Levkowitz, 2003). Visualization can help

to achieve goals such as: identifying critical points (hot-spots) of

project erosion (design) and code decay (Ratzinger et al., 2005);

finding software elements that are inducing code decay (Eick et al.,

2001); and analyzing code anomalies (code smells) in software

(Lanza et al., 2005).

The recognition that the use of software visualization can help

software evolution analysis is not new. First works in the area ap-

peared about 25 years ago (Eick et al., 1992). However, recently a

growing body of relevant work is being developed in the area.

A seminal work in the area was Seesoft (Eick et al., 1992). It

mapped lines of code as thin lines on the computer screen. The

color of each line indicated an attribute (or statistic, as the authors

define) of interest. The main purpose of Seesoft was not visual-

izing software evolution. Instead, it focused on: (a) static analysis

to see where functions are called in the code; and (b) dynamic

analysis for profiling through presentation of the memory used and

program execution time (Eick et al., 1992). In the context of soft-

ware evolution visualization, it showed the age of the source code

lines (Ball and Eick, 1996). The most recently modified lines were

painted red, and the older ones in blue. There was an interpola-

tion between these two colors to represent the rows (lines of code)

with intermediate ages.

In 2001, Lanza proposed Evolution Matrix (Lanza, 2001) to vi-

sualize software evolution. The Evolution Matrix uses rectangles to

represent the software modules and their horizontal position rep-

resents different versions of the module. It is possible to see soft-

ware evolution patterns such as growth of modules or stagnation

of their development. The author used an astronomy metaphor to

analyze some aspects of software module evolution. In the paper,

the evolution of classes was classified according to well-known

types of stars (e.g. Pulsar, Supernova, Red Giant, etc.). In 10 years,

this paper became the most cited work within the software evolu-

tion visualization community (Novais et al., 2013a).

D’Ambros et al. (2009) proposed the Evolution Radar, a view-

based approach that integrates logical coupling information both

at file and module level. Ripley et al. (2007) proposed a visual ap-

proach that allows the gain of a better understanding of the soft-

ware project evolution. The approach provides an overview of all

staff development activities, relating them to the project evolution,

using information contained in source code repositories. Similarly,

Evolution Storyboards (Beyer and Hassan, 2006) is an animated

display of the software history. It enables the developer to iden-

tify software modules that are becoming more or less dependent

on others. This visualization tries to show code decay symptoms,

highlighting candidates for refactoring and also good structures.

Collberg et al. (2003) proposed a software evolution display

system based on graphs. This system displays the evolution of

the software using a new technique of drawing graphs, which al-

lows one to view large structures using a temporal component.

Voinea and Telea (2006b) developed an open framework for con-

sultation, analysis and visualization of CVS repositories of data.

This tool uses multiple perspectives to show software evolution in

a square matrix. Each column of the matrix shows the evolution of

a metric.

Wu et al. (2004a) used Spectographs to explore the evolution

of software. Evolution Spectograph combines time spectrum and

source code measurement properties in colors to characterize soft-

ware evolution. The color technique used aims to easily distinguish

patterns in evolutionary data.

Considering that data evolution is multidimensional, some au-

thors have proposed the use of animated visualizations. The work

of Langelier et al. (2008) is one example. They proposed an ap-

proach that uses animated visualization to explore software quality

evolution.

In 2012, Kuhn and Stocker proposed the CodeTimeline

(Kuhn and Stocker, 2012), an approach that uses visualization to

tell the story of software project based on its versioning data.

Notes can be used to share events of system life memories as jus-

tifications for the design used in the past. The notes can also be

used to register more casual project memories, such as photos of

any time of interest of the project team being viewed. CodeTime-

line uses color and vertical positioning to tell the story of the soft-

ware. It uses a base layer to show an authorship map, where colors

identify the developers, lines represent the history of the file, and

bubbles represent the commits for the files.

Several other studies have been proposed over the years. In a

systematic mapping study published in 2013 (Novais et al., 2013a),

we found 146 works addressing the topic Software Evolution Vi-

sualization. MaEny studies found in literature use the information

contained in source code repositories, such as the commits and au-

thors. They usually focus on a specific activity of software evolu-

tion. They almost always use a single view and a restricted set of

Download English Version:

https://daneshyari.com/en/article/4956478

Download Persian Version:

https://daneshyari.com/article/4956478

Daneshyari.com

https://daneshyari.com/en/article/4956478
https://daneshyari.com/article/4956478
https://daneshyari.com

