
The Journal of Systems and Software 128 (2017) 72–86

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Continuous Delivery: Overcoming adoption challenges

✩

Lianping Chen

Lianping Chen Limited, Dublin, Ireland

a r t i c l e i n f o

Article history:

Received 29 August 2016

Revised 23 December 2016

Accepted 16 February 2017

Available online 20 February 2017

Keywords:

Agile Software Development

Continuous Delivery

Continuous Deployment

Continuous Software Engineering

DevOps

Adoption

a b s t r a c t

Continuous Delivery (CD) is a relatively new software development approach. Companies that have

adopted CD have reported significant benefits. Motivated by these benefits, many companies would like

to adopt CD. However, adopting CD can be very challenging for a number of reasons, such as obtain-

ing buy-in from a wide range of stakeholders whose goals may seemingly be different from—or even

conflict with—our own; gaining sustained support in a dynamic complex enterprise environment; main-

taining an application development team’s momentum when their application’s migration to CD requires

an additional strenuous effort over a long period of time; and so on. To help overcome the adoption

challenges, I present six strategies: (1) selling CD as a painkiller; (2) establishing a dedicated team with

multi-disciplinary members; (3) continuous delivery of continuous delivery; (4) starting with the easy

but important applications; (5) visual CD pipeline skeleton; (6) expert drop. These strategies were de-

rived from four years of experience in implementing CD at a multi-billion-euro company. Additionally,

our experience led to the identification of eight further challenges for research. The information con-

tributes toward building a body of knowledge for CD adoption.

© 2017 The Author. Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Continuous Delivery (CD) is a software engineering approach

in which teams keep producing valuable software in short cycles

and ensure that the software can be reliably released at any time

(Chen, 2015a).

The CD approach is relatively new. It started gaining wide at-

tention only in 2010, when Humble and Farley published the book

titled “Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation” (Humble and Farley,

2010). However, the CD approach has become increasingly popu-

lar, as shown by Google search trends (Fig. 1).

Companies that practice CD have reported huge benefits, such

as significant improvements in time-to-market, customer satisfac-

tion, product quality, release reliability, productivity and efficiency,

and the ability to build the right product through rapid experi-

ments (Chen, 2015a; Leppanen et al., 2015).

These benefits have motivated many companies to adopt CD.

According to a recent survey of 600 software developers, managers,

and executives in the United States and the United Kingdom, only

3% of the respondents said they had no plans to adopt CD (Perforce

Software Inc., 2015).

✩ The work was done when the author was at Paddy Power PLC.

E-mail address: lianping.chen@outlook.com

However, implementing CD can be quite challenging (Chen,

2015a; Leppanen et al., 2015; Claps et al., 2015). Although CD as a

goal (a target state) is no longer a new idea and has been well doc-

umented (Humble and Farley, 2010), the adoption journey for CD

is not yet a smooth path. The journey itself is where the challenges

lie, where many companies struggle, and where practitioners need

help. Some of the fundamental challenges include the following:

• acquiring buy-in from a wide range of stakeholders whose goals

may seemingly be different from—or even conflict with—those

of the team driving the CD implementation;
• gaining sustained support in a dynamic complex enterprise en-

vironment;
• maintaining an application development team’s momentum

when their application’s migration to CD requires an additional

strenuous effort over a long period of time.

To help overcome the adoption challenges, I present six strate-

gies we learned along our journey to CD at a multi-billion-euro

company called Paddy Power. Paddy Power has been in the process

of implementing CD for the past four years and, consequently, we

have encountered and overcome many challenges. However, even-

tually, we achieved huge benefits (Chen, 2015a).

I hope the strategies described here can help fellow practition-

ers to overcome similar challenges on their way to achieving CD.

The information also contributes toward building a body of knowl-

edge for CD adoption.

http://dx.doi.org/10.1016/j.jss.2017.02.013

0164-1212/© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.jss.2017.02.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.02.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:lianping.chen@outlook.com
http://dx.doi.org/10.1016/j.jss.2017.02.013
http://creativecommons.org/licenses/by/4.0/

L. Chen / The Journal of Systems and Software 128 (2017) 72–86 73

Fig. 1. Five-year Google trend for the search term "Continuous Delivery".

I also outline eight further challenges for research. Although

not all of them are new, I provide elaboration on why these

challenges are important for the industry, which on its own right

can be useful input to researchers.

The remainder of this paper is organized as follows:

Section 2 describes the context from which the strategies de-

scribed here were derived. Section 3 describes the six strategies.

I discuss related work in Section 4 and outline further research

challenges in Section 5 . Section 6 summarizes the paper.

2. The context

2.1. Paddy Power

Paddy Power is a rapidly growing company in the bookmaking

industry. It offers its services in regulated markets, through bet-

ting shops, phones, and the Internet. It has an annual turnover of

approximately €7 billion and employs approximately 50 0 0 people.

Paddy Power recently merged with Betfair, making it the world’s

largest public online betting and gaming company.

The company relies heavily on an increasingly large number of

custom software applications that include websites, mobile apps,

trading and pricing systems, live-betting-data distribution systems,

and software used in betting shops. We developed these applica-

tions using a wide range of technology stacks, including Java, Ruby,

PHP, and .NET. To run the applications, the company has an IT in-

frastructure consisting of thousands of servers in different loca-

tions. The applications are developed and maintained by the Tech-

nology Department, which employs approximately 500 people.

2.2. Continuous Delivery

At Paddy Power, we view Continuous Delivery as a software en-

gineering approach in which teams keep producing valuable soft-

ware in short cycles and ensure that the software can be reliably

released at any time (Chen, 2015a). The following sections high-

light the characteristics of CD that are important to us.

2.2.1. Valuable software

Developing valuable software is a goal that has long been on

the Agile manifesto (Beck et al., 2001). However, it is not an easy

goal to achieve. Before adopting CD, some of our teams had been

using an Agile method called Kanban (Anderson, 2010); however,

due to delivery problems, we still had situations where a team had

completed a feature but could not deliver it to production to ob-

tain users’ feedback. Consequently, they built additional function-

alities on top of that feature, simply assuming it was useful. Un-

fortunately, when they finally delivered the software to the users,

they found out that the feature was not what the users needed.

Even worse, by that point, significant effort had been spent on the

feature and the additional functionalities. An important objective

of our CD implementation was to alleviate this problem. We want

teams to build valuable software rather than spend time on fea-

tures that users do not need.

2.2.2. Short cycles

We use "cycle time" to refer to the time from the conception

of a user story to its production. Our cycle time used to be multi-

month. Because of this long cycle time, the user stories that were

completed earlier in the cycle had to wait for a long time. The

value they could otherwise have generated was lost. Moreover, we

were unable to obtain early user feedback. Therefore, shortening

the cycle time is important.

2.2.3. Releasable at any time

Before implementing CD, applications were only releasable at

the end of a long release cycle. This constraint caused problems.

For example, business people could not obtain a release to users

on demand in the middle of this long cycle, no matter how des-

perately they needed it; users were simply forced to wait until the

next big release to obtain some important features—although those

features might have been developed early, at the beginning of the

cycle. To eliminate these problems, we want applications to be re-

leasable at any time.

2.2.4. Reliable releases

Our emphasis on reliable releases stem directly from bad re-

lease experiences. Each time we were about to release, we had lit-

tle confidence in the release reliability. Many times, these releases

would be followed by P1 (priority 1) incidents (Rob, 2007), mean-

ing that release activity was always full of uncertainty, failures, and

stress. Reliable releases are a big point of distinction between our

old practices and CD.

A term very similar to CD exists: Continuous Deployment. In

academia, people tend to use it interchangeably with Continuous

Delivery (Rodríguez et al., 2016).

However, many practitioners tend to clearly distinguish these

two terms. The distinction is that under Continuous Deployment

we deploy any change to production that passes a series of tests.

In contrast, under Continuous Delivery, we ensure that the soft-

ware can be reliably released at any time, but it is up to a hu-

man to decide when to release. In both Continuous Deployment

and Continuous Delivery, deployment to production itself is auto-

mated. The difference lies in the trigger for making the deploy-

ment. One is triggered automatically, while the other is triggered

by a human. According to this distinction, Continuous Delivery is

compatible with a wide range of scenarios, but Continuous Deploy-

ment is suitable only under special conditions (O’Dell and Skelton,

2016). As do most companies, we mainly use Continuous Delivery.

Download	English	Version:

https://daneshyari.com/en/article/4956479

Download	Persian	Version:

https://daneshyari.com/article/4956479

Daneshyari.com

https://daneshyari.com/en/article/4956479
https://daneshyari.com/article/4956479
https://daneshyari.com/

