
The Journal of Systems and Software 128 (2017) 106–129

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A tool to support the definition and enactment of model-driven

migration processes

Fco. Javier Bermúdez Ruiz

∗, Óscar Sánchez Ramón, Jesús García Molina

Faculty of Informatics, University of Murcia, Campus of Espinardo, 30100, Murcia (Spain)

a r t i c l e i n f o

Article history:

Received 4 April 2016

Revised 8 March 2017

Accepted 9 March 2017

Available online 10 March 2017

Keywords:

Model-driven engineering

Software processes

Software migrations

Process enactment

a b s t r a c t

One of the main challenges to achieve the industrial adoption of Model-Driven Engineering (MDE)

paradigm is building tools able to support model-driven software processes. We present a tool for the

definition and enactment of model-driven migration processes. We have created a SPEM-based language

for defining Abstract Migration models that represent an MDE migration solution for a particular pair of

source and target technologies. For each legacy application to be migrated, the Abstract Migration model

is transformed into a Concrete Migration model which contains all the information needed for the enact-

ment. Then, these models are enacted by means of a process interpreter which generates Trac tickets for

executing automated tasks by means of Ant scripts and managing manual tasks with the Mylyn tool.

Our work has therefore two main contributions: i) it proposes a novel solution for the enactment that

integrates the execution of the automated tasks with the generation of tickets to support the manual

tasks, and ii) it describes how MDE techniques can be used to implement process engineering tools, in

particular migration processes. The article presents the approach and describes in detail the essential

aspects of our tool.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Software modernisation typically refers to understanding and

evolving existing software assets to maintain their business value.

A legacy system is modernised when maintenance is not enough to

achieve the desired improvements (e.g., new capabilities or greater

maintainability) since that system must be extensively changed.

Software migration is a form of modernisation that involves mov-

ing an application, as a whole or a part of it, from the platform

on which is currently operating to a target platform that provides

better features. A migration can be done in a disciplined way by

applying a software re-engineering process that consists of three

stages: reverse engineering, restructuring, and forward engineering

(Seacord et al., 2003).

Model-Driven Software Engineering (MDSE or simply MDE) has

emerged as a new area of software engineering that emphasises

the systematic use of models in the software lifecycle in order

to improve its productivity and software quality aspects such as

maintainability and interoperability. MDE techniques, e.g. meta-

modelling and model transformations, allow tackling the complex-

∗ Corresponding author.

E-mail addresses: fjavier@um.es (Fco.J. Bermúdez Ruiz), osanchez@um.es (Ó.

Sánchez Ramón), jmolina@um.es (J. García Molina).

ity of software by raising its abstraction and automation levels

(Brambilla et al., 2012). These techniques have been proven use-

ful not only for developing new software applications (OMG, 2003;

Kelly and Tolvanen, 2008) but also for modernising legacy systems.

In the latest years, MDE techniques have been applied to a vari-

ety of modernisation scenarios (OMG, 2008a; Ulrich and Newcomb,

2010), especially in the migration of applications (Fleurey et al.,

2007; Ramón et al., 2014). However, building tools for supporting

MDE software processes is a challenge that must be met to achieve

the industrial adoption of MDE (Selic, 2012).

As Leon J. Osterweil stated in his influential paper (Osterweil,

1987) about the nature of software processes, “software processes

are software too”, so they can be described by specifications (i.e.

models) that can be executable. Process Engineering (Gruhn, 2002)

is the Software Engineering area focused on the modelling and

enactment of process models. MDE techniques can significantly

leverage this area as some works recently presented have illus-

trated. Most of the activity has been focused on the SPEM meta-

model (OMG, 2006) and the definition of approaches to enact

SPEM models (Bendraou et al., 20 05; 20 07; Ellner et al., 2010).

How MDE development processes can be supported by using MDE-

based process engineering tools has received little attention up to

date (Golra and Dagnat, 2012; Koudri and Champeau, 2010; Steudel

et al., 2012; Gamboa and Syriani, 2016; Maciel et al., 2013).

http://dx.doi.org/10.1016/j.jss.2017.03.009

0164-1212/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2017.03.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.03.009&domain=pdf
mailto:fjavier@um.es
mailto:osanchez@um.es
mailto:jmolina@um.es
http://dx.doi.org/10.1016/j.jss.2017.03.009

Fco.J. Bermúdez Ruiz et al. / The Journal of Systems and Software 128 (2017) 106–129 107

MDE software processes integrate automated tasks (e.g. model-

to-text transformations) with tasks to be manually performed by

developers (e.g. writing code for the business logic layer). A pro-

cess engineering tool supporting such processes should provide ba-

sic functionality such as: i) the specification of the software pro-

cess, ii) the execution of the automated tasks, iii) the support and

guidance for the software managers and developers involved in the

manual tasks, and iv) the integration of manual and automated

tasks into a task workflow.

Our research group collaborated with a software development

company in a pilot project aimed at migrating Oracle Forms ap-

plications to the Java platform. In this project, model-driven re-

engineering was applied to partly automate the migration effort.

Due to the lack of software environments with the aforemen-

tioned functionality, we built the Models4Migration tool described

in this article. Unlike when MDE techniques are used to develop

new software, MDE migration processes involves repeatedly apply-

ing a model transformation chain to all the existing artefacts of

the same kind (e.g., DDL scripts and GUI code). As stated in Feiler

and Humphrey (1992) “It is desirable to define software processes

with sufficient precision so that many of the routine enactment

tasks can be automated”. In the case of a model-driven migration,

models to be enacted should provide information on concrete arte-

facts of the legacy application to be migrated. In addition, the MDE

migration experience described in Fleurey et al. (2007) evidenced

that “to maximise the efficiency of the migration process, the tasks

that are left to the developer have to be clearly identified and the

developer should be provided with all the information he or she

needs”. These specificities of MDE migrations have been consid-

ered in building our tool, which is based on an MDE approach that

has been implemented around three main design choices: i) The

definition of a SPEM-based language tailored to express MDE mi-

gration processes; ii) A migration is defined at two levels of mod-

elling: abstract models represent a migration process for a pair of

source and target technologies and they are refined into concrete

models that include the information needed to be enacted; iii) The

enactment of a concrete model consists of automatically execut-

ing automated tasks and generating manual tasks as Trac 1 tickets

which are managed as Mylyn

2 tasks. Team leaders and developers

could save a great effort with the proposed automation.

Some approaches have been proposed to enact MDE processes

(Steudel et al., 2012; Gamboa and Syriani, 2016; Maciel et al.,

2013). However, they do not support the aforementioned specific

requirements of MDE migrations. Therefore our work presents two

main contributions. Firstly, the manual task interface with Trac

server is one of the main novelties of the approach. Ticket creation

is very useful in order to implement manual tasks owing to it is

able to define the context for guiding the task completion inside

well-known development environment, such as Eclipse. However,

creating tickets is a tedious and time consuming task to be per-

formed by team leaders. We have defined an enactment approach

that automatically generates these tickets and this generation is in-

tegrated with the execution of automated tasks. This automation

is specially useful for MDE migration processes. We have chosen

Trac 3 and Mylyn

4 since they are open-source tools commonly used

by software companies, but tools with similar functionality could

be used in our approach. Note that our approach goes beyond the

definition of software processes provided by tools such as EPF, 5 or

the enactment proposed in some approaches which does not sup-

port the execution of applications which addresses the tasks of a

1 http://trac.edgewall.org .
2 http://www.eclipse.org/mylyn .
3 https://trac.edgewall.org/ .
4 http://www.eclipse.org/mylyn/ .
5 http://www.eclipse.org/epf .

process (Ellner et al., 2012; Golra and Dagnat, 2012; Koudri and

Champeau, 2010).

Secondly, our work shows how an MDE approach can be used

to build a tool supporting software development processes, in par-

ticular MDE-based migration processes, from the definition of soft-

ware processes to the management of the tasks to be performed

by managers and developers. Note that this article is focused on

the migration tool built to support the definition and enactment

of migration processes, being the details of the actual migration

processes left out.

The paper is organised as follows. The next section introduces

some basic concepts about migration processes, model-driven en-

gineering, and the SPEM metamodel; in addition, some issues

that arise when dealing with model-driven migration processes

are addressed. Section 3 presents the running example that will

be used to illustrate the proposed approach, which is outlined in

Section 4 . The following three sections explain in detail each one

of the tasks that are supported by the Models4Migration tool, i.e.

the definition, instantiation and enactment of migration models.

Section 8 will describe how the migration tool can be used and

Section 9 will show how has been applied to a real case study.

Next, some lessons learned are commented in Section 10 . Finally,

the related work is presented in Section 11 and the conclusions are

drawn in Section 12 .

2. Background and motivation

The aim of this section is to motivate our work and introduce

some background about software process modelling and model-

driven migrations. First, we analyse some essential aspects of soft-

ware process modelling and elicit the functionality to be provided

by a tool supporting a model-driven migration. Next, we define

some basic concepts of MDE and introduce the SPEM language. Fi-

nally we present a black box vision of the tool created, showing

the inputs and the outputs of the tool.

2.1. Modelling and enactment of migration processes

A software process involves the accomplishment of a workflow

of activities which create the software artefacts of the target sys-

tem. Each of these activities can be composed of several tasks

which indicate how to fulfil them. For example, the migration of

procedures that implement business logic can be done by per-

forming an automatic translation by some means, or by a devel-

opment team that implement them by hand. Tasks can be classi-

fied accordingly to the way they are accomplished in three cate-

gories (Osterweil, 1987):

• Automated tasks : the goal of the task can be achieved with-

out any human intervention, usually by the execution of one

or more tools. For instance, the execution of model transforma-

tions by means of a model transformation engine.
• Manual tasks : the goal of the task must be achieved by a hu-

man, either because it is difficult to automate or because it re-

quires supervision. For instance, a code completion task where

a developer has to implement some functionality.
• Semi-automated tasks : the goal of the task is achieved in a

partly automated way as it requires human performance or

interaction at some point. For instance, an assistant window

which requires some data from an developer to complete some

functionality.

It is interesting to differentiate that activities show what to do,

and the tasks show how to do it. Therefore, note that activities are

more abstract concepts than tasks. It is also worth noting that ac-

tivities as well as tasks must be arranged in order for the process

to be analysed or executed.

http://trac.edgewall.org
http://www.eclipse.org/mylyn
https://trac.edgewall.org/
http://www.eclipse.org/mylyn/
http://www.eclipse.org/epf

Download	English	Version:

https://daneshyari.com/en/article/4956481

Download	Persian	Version:

https://daneshyari.com/article/4956481

Daneshyari.com

https://daneshyari.com/en/article/4956481
https://daneshyari.com/article/4956481
https://daneshyari.com/

