
The Journal of Systems and Software 125 (2017) 15–34

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Exploiting traceability uncertainty between software architectural

models and extra-functional results

Catia Trubiani a , ∗, Achraf Ghabi b , Alexander Egyed

c

a Gran Sasso Science Institute, L’Aquila, Italy
b celum GmbH, Linz, Austria
c Johannes Kepler University, Linz, Austria

a r t i c l e i n f o

Article history:

Received 15 February 2016

Revised 29 September 2016

Accepted 23 November 2016

Available online 23 November 2016

Keywords:

Traceability

Uncertainty

Software modeling

Extra-functional results

a b s t r a c t

Deriving extra-functional properties (e.g., performance, security, reliability) from software architectural

models is the cornerstone of software development as it supports the designers with quantitative pre-

dictions of system qualities. However, the problem of interpreting results from quantitative analysis of

extra-functional properties is still challenging because it is hard to understand how the analysis results

(e.g., response time, data confidentiality, mean time to failure) trace back to the architectural model ele-

ments (i.e., software components, interactions among components, deployment nodes).

The goal of this paper is to automate the traceability between software architectural models and extra-

functional results, such as performance and security, by investigating the uncertainty while bridging these

two domains. Our approach makes use of extra-functional patterns and antipatterns, such as performance

antipatterns and security patterns, to deduce the logical consequences between the architectural elements

and analysis results and automatically build a graph of traces, thus to identify the most critical causes of

extra-functional flaws. We developed a tool that jointly considers SOftware and Extra-Functional concepts

(SoEfTraceAnalyzer), and it automatically builds model-to-results traceability links. This paper demon-

strates the effectiveness of our automated and tool supported approach on three case studies, i.e., two

academic research projects and one industrial system.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the software development domain there is a very high in-

terest in the early validation of extra-functional requirements be-

cause this ability avoids late and expensive repairs to consolidated

software artifacts (Chung et al., 2012). One of the proper ways

to manage software quality is to systematically predict the extra-

functional properties of the software system throughout the de-

velopment process. It is thus possible to make informed choices

among architectural and design alternatives; and knowing in ad-

vance if the software will meet its extra-functional objectives

(Grunske et al., 2007).

Advanced Model-Driven Engineering (MDE) techniques have

successfully been used in the last few years to introduce automa-

tion in software quality modeling and analysis (Ameller et al.,

2010). Nevertheless, the problem of interpreting extra-functional

results is still quite challenging. A large gap exists between the

∗ Corresponding author.

E-mail addresses: catia.trubiani@gssi.infn.it (C. Trubiani), a@ghabi.net (A. Ghabi),

alexander.egyed@jku.at (A. Egyed).

representation of extra-functional analysis results and the software

architectural model provided by the engineers. In fact, the for-

mer usually contains numbers (e.g., throughput variance, vulner-

ability level, mean time to failure, etc.), whereas the latter em-

beds architectural choices (e.g., software components, interaction

among components, deployment nodes). Today, the interpretation

of extra-functional results is mostly based on the analysts’ experi-

ence and therefore its effectiveness often suffers from lack of au-

tomation (Woodside et al., 2007).

In Ghabi and Egyed (2015) we proposed a language capable of

capturing model-to-code traceability while considering typical un-

certainties in its domain. For example, the engineer knows that

some given piece of code may implement an architectural element;

however, not whether this piece of code also implements other ar-

chitectural elements; or whether this architectural element is also

implemented elsewhere (other code). This paper adapts this lan-

guage to provide model-to-results traceability links while consider-

ing typical uncertainties from the extra-functional analysis domain.

We presume that engineers know when a given extra-functional

result is affected by an architectural element. However, they may

not know whether this extra-functional result is also affected by

http://dx.doi.org/10.1016/j.jss.2016.11.032

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.11.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.032&domain=pdf
mailto:catia.trubiani@gssi.infn.it
mailto:a@ghabi.net
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.jss.2016.11.032

16 C. Trubiani et al. / The Journal of Systems and Software 125 (2017) 15–34

other architectural elements or whether other extra-functional re-

sults are also affected by this architectural element.

Further knowledge can be considered to better understand the

relationship between architectural elements and extra-functional

results, in particular extra-functional patterns and antipatterns

(Vlissides et al., 1995; Brown et al., 1998) represent best and bad

practices in architectural models affecting extra-functional prop-

erties. A pattern specification (Vlissides et al., 1995) includes so-

lutions to commonly occurring problems, e.g., security patterns

(Fernandez-Buglioni, 2013) encapsulate knowledge and expertise

to improve security properties such as confidentiality, integrity,

etc. An antipattern definition (Brown et al., 1998) includes the

description of bad practices occurring in the architectural model

along with the solution that can be applied to avoid negative

consequences, e.g., performance antipatterns (Smith and Williams,

2012) collect domain-expert knowledge to react against perfor-

mance flaws such as low response time, high network utilization,

etc.

This paper is an extension of Trubiani et al. (2015) where we fo-

cused on performance analysis results and we used software per-

formance antipatterns to reduce model-to-results traceability un-

certainties. The contribution of this paper is to provide support

in the process of identifying the architectural model elements that

most likely contribute to the violation of multiple extra-functional

requirements by jointly considering knowledge from engineers and

extra-functional patterns and antipatterns. To this end, we de-

veloped a tool, namely SoEfTraceAnalyzer Trubiani et al. (2016) ,

that jointly considers Software and Extra-Functional concepts: it

takes as input a set of statements specifying the relationships be-

tween software elements and extra-functional properties, and pro-

vides as output model-to-results traceability links. The language

defined in Ghabi and Egyed (2015) is extended by adding a weight-

ing methodology that quantifies the extra-functional requirements’

violation, thus to highlight the criticality of model elements de-

spite extra-functional properties. The key feature of our tool is that

the knowledge of extra-functional patterns and antipatterns can be

embedded in the specification of uncertainties to deduce the log-

ical consequences between architectural elements and analysis re-

sults, thus to disambiguate the limited knowledge of engineers.

Our approach is not limited, in principle, to specific extra-

functional properties. However, to investigate the effectiveness

of traceability links, in this paper we decided to focus on per-

formance and security, and we make use of security patterns

(Fernandez-Buglioni, 2013) and performance antipatterns (Smith

and Williams, 2012) to reduce traceability uncertainty. This choice

is driven by the fact that security has a “direct” overhead on per-

formance, whereas other extra-functional properties may not. For

example, it is well known that introducing security mechanisms,

such as encryption of data, inevitably consume system resources

influencing the system performance, even affecting its full oper-

ability. On the contrary, increasing system reliability may mean to

create copies of software components off-line without any impact

on the system performance.

The paper is organized as follows: Section 2 describes an il-

lustrative example; Section 3 discusses the relationships between

software development artifacts and extra-functional properties;

Section 4 describes our approach; Section 5 illustrates the vali-

dation of the approach on three case studies (i.e., two academic

research projects and one industrial system); Section 6 discusses

the threats to validity of the approach; Section 7 presents related

work; Section 8 concludes the paper.

2. Illustrative example

In this section we illustrate the DesignSpace , an academic re-

search project aimed at building an engineering infrastructure

to integrate diverse development artifacts and their relations

(Demuth et al., 2015). It is an engineering platform for the ex-

change, linking, and validation of the knowledge across different

artifacts. It supports distributed collaboration, a wide range of tools

and development, maintenance, and evolution of services includ-

ing incremental consistency checking and transformation. There

are three main challenges: (i) how the knowledge created and ma-

nipulated by engineers in their respective single-user tools is being

made available to other engineers; (ii) how this knowledge is inter-

connected to express cross-tool dependencies; (iii) how engineers

benefit from analysis and transformation techniques.

Fig. 1 provides a high-level overview of the DesignSpace system

(Demuth et al., 2015) to illustrate some examples of the involved

artifacts and their traceability, thus to demonstrate the need of our

approach. Fig. 1 a provides a high-levelcrs and artifacts involved in

a system. There are five engineers: Alice is an architect and col-

laborates with Bob on the modeling of a subpart of the system re-

ported in the software architectural model m 1 . Bob is also an ana-

lyst and checks if the extra-functional results r 2 of this subsystem

are fulfilling the stated requirements. Similarly, Carol is an architect

and collaborates with David on the modeling of an other subpart of

the system reported in the model m 3 . David is also an analyst and

checks the results r 4 of this last subsystem. Finally, Paul is a project

manager and manages the software architectural model m 5 mod-

eling the whole system, and the global extra-functional results r 6 .

Examples of both functional and extra-functional requirements are

reported in Fig. 1 b: R 1 is a functional requirement through which

the architectural models are updated, e.g., changes to model m 1

require modifications to m 5 but not to m 3 ; R 2 is a performance re-

quirement requesting a maximum delay of 3 s when loading the

models; R 3 is a security requirement regulating the users access

to models under authorization, e.g., Alice can access to model m 1

only, David can access to model m 3 and results r 4 , whereas Paul

can access to all artifacts, i.e., all models and extra-functional re-

sults.

As stated in Egyed and Grünbacher (2004) , when analyzing

trade-offs among these requirements, the developer must under-

stand how the requirements affect each other. The goal of our ap-

proach is to trace extra-functional results to architectural model ar-

tifacts thus to support software designers in the task of identifying

the most suitable model elements responsible for bad properties,

if any.

3. Software architectural models and extra-functional

properties

Common practice for software engineers is to document archi-

tectural descriptions, however it is less common to document how

such architectural elements (e.g., software components, dynamic

scenarios, deployment nodes, etc.) are related to extra-functional

properties (e.g., performance, security). Knowing about traceabil-

ity is important to understand what are the architectural elements

contributing to extra-functional properties and deriving the most

suitable refactoring actions to improve such properties. The goal of

this work is to support software designers in the task of identi-

fying the relationships between software architectural models and

extra-functional results.

We refer to specific software architectural elements where the

granularity of an architectural element is entirely user-definable.

An architectural element could be a software component, a service

built on top of several components, or any other logical grouping

(e.g., a hardware device hosting several software components). We

will discuss the implications of different granularity choices later.

We refer to specific extra-functional properties, such as per-

formance (e.g., response time, throughput, utilization) and secu-

rity (e.g., security level/risk). Here also the granularity is arbi-

Download English Version:

https://daneshyari.com/en/article/4956498

Download Persian Version:

https://daneshyari.com/article/4956498

Daneshyari.com

https://daneshyari.com/en/article/4956498
https://daneshyari.com/article/4956498
https://daneshyari.com

