
The Journal of Systems and Software 125 (2017) 35–46

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Logical query optimization for Cloudera Impala system

�

Jiaoyang Ma

a , Ling Chen

a , ∗, Mingqi Lv

c , Yi Yang

a , Yuliang Zhao

a , Yong Wu

b ,
Jingchang Wang

b

a College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
b Zhejiang Hongcheng Computer Systems Co., Ltd., Hangzhou, Zhejiang, China
c College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China

a r t i c l e i n f o

Article history:

Received 29 July 2015

Revised 14 September 2016

Accepted 23 November 2016

Available online 24 November 2016

Keywords:

Logical query

Bushy tree

Cost model

Cloudera Impala system

a b s t r a c t

Cloudera Impala, an analytic database system for Apache Hadoop, has a severe problem with query plan

generation: the system can only generate query plans in left-deep tree form, which restricts the ability

of parallel execution. In this paper, we present a logical query optimization scheme for Impala system.

First, an improved McCHyp (MinCutConservative Hypergraph) logical query plan generation algorithm

is proposed for Impala system. It can reduce the plan generation time by introducing a pruning strategy.

Second, a new cost model that takes the characteristics of Impala system into account is proposed. Finally,

Impala system is extended to support query plans in bushy tree form by integrating the plan generation

algorithm. We evaluated our scheme using TPC-DS test suit. Experimental results show that the extended

Impala system generally performs better than the original system, and the improved plan generation

algorithm has less execution time than McCHyp. In addition, our cost model fits better for Impala system,

which supports query plans in bushy tree form.

© 2016 Published by Elsevier Inc.

1. Introduction

As the era of big data is coming, how to query more efficiently

becomes an urgent need for industries, e.g., Internet, telecommu-

nication, and finance. To meet this need, analytic database systems

for big data appear, e.g., Google Dremel system (Melnik et al.,

2010), Berkeley Shark system (Engle et al., 2012), and Cloudera

Impala system. Instead of using the MapReduce batch processing

(Dean and Ghemawat, 2008), Impala system uses a distributed

query engine, which gets data directly from HDFS (Hadoop Dis-

tributed File System) (White, 2012) or HBase (George, 2011), in

order to reduce the query response time. As compared with the

distributed data warehouse Hive (Thusoo et al., 2009; Thusoo et

al., 2010), the query response time is reduced by a factor of 3–90.

Impala system’s beta release was in October 2012 and its GA (Gen-

erally Available) edition was in May 2013. The most recent version,

Impala system 2.0, was released in October 2014. Impala system’s

� This work was funded by the Ministry of Industry and Information Tech-

nology of China (No. 2010ZX01042-0 02-0 03-0 01), China Knowledge Centre for

Engineering Sciences and Technology (No. CKCEST-2014-1-5), the National Nat-

ural Science Foundation of China (Nos. 60703040 , 61202282 , and 61332017),

the Science and Technology Department of Zhejiang Province (Nos. 2011C13042 ,

2013C01046 , and 2015C33002), the Natural Science Foundation of Zhejiang Province

(No. LY15F020025).
∗ Corresponding author.

E-mail address: lingchen@cs.zju.edu.cn (L. Chen).

ecosystem momentum continues to accelerate with nearly one

million downloads since its GA (Marcel et al., 2015).

However, the current Impala system has the following prob-

lems: First, Impala system can only generate query plans in

left-deep tree form, which can only be executed serially. A node in

the plan tree cannot be executed unless its left sub-tree has been

executed (the right sub-tree is always a scan node, which only

reads data from storage). Second, Impala system uses a cost-based

logical query plan generation algorithm to generate logical query

plans. However, the cost model only takes the size of data and the

cardinality of joins into account. This cost model is not accurate

in cluster environment, since the network transfer cost has not

been considered. When Impala system runs on a cluster that has a

slow network transfer rate, the network transfer cost can be even

higher than disk I/O. Ignoring the network transfer cost may lead

to sub-optimal plans.

For the first problem, we exploit query plans in bushy tree

form with the bushy tree based logical query optimization, which

enables concurrent execution of nodes in a query tree. For the

second problem, we propose a new cost model, which considers

the characteristics of Impala system. It is more accurate for a plan

tree, and can lead to an optimal query plan.

In this paper, we present a logical query optimization scheme

for Impala system. First, an improved McCHyp (Fender and Mo-

erkotte, 2013) logical query plan generation algorithm (called

Improved-McCHyp) is proposed for Impala system. A pruning

http://dx.doi.org/10.1016/j.jss.2016.11.038

0164-1212/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jss.2016.11.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.038&domain=pdf
http://dx.doi.org/10.13039/501100006579
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004731
mailto:lingchen@cs.zju.edu.cn
http://dx.doi.org/10.1016/j.jss.2016.11.038

36 J. Ma et al. / The Journal of Systems and Software 125 (2017) 35–46

strategy is introduced to reduce plan generation time. Second, a

new cost model is proposed, which considers disk I/O, network

transfer cost, the size of the right table in the join operation, and

the size of join. The cost model is based on bushy tree, which

suits for the modified Impala system. Finally, Impala system is ex-

tended to support bushy tree query plans and the plan generation

algorithm is integrated into Impala system.

Our contributions are as follows.

• Present a query optimization scheme for Impala analytic

database system. The scheme considers the characteristics of

Impala system and prefers bushy tree logical query plan that

makes full use of parallel execution so as to accelerate query

processing.
• Present the Improved-McCHyp algorithm, which is optimized

by a pruning strategy to reduce logical query plan generation

time.
• Design a bushy tree oriented cost model that takes into

account the characteristics of Impala system, i.e., disk I/O, net-

work transfer cost, the size of right table, and the size of join.
• Implement the scheme in Impala system and conduct exten-

sive experiments. The results demonstrate the validity and

efficiency of our algorithm.

The rest of this paper is organized as follows. Section 2 pro-

vides related work, and Section 3 introduces several preliminaries.

Section 4 details the logical query optimization scheme, including

the Improved-McCHyp algorithm, the cost model, and the bushy

tree based logical query plan presentation. Section 5 contains

experimental evaluation, and Section 6 concludes the paper.

2. Related work

Logical plan generation can be divided into traditional plan

generation and heuristic plan generation. When using tradi-

tional plan generation approaches, plans are represented by trees

in most cases. The shape of trees can be further divided into

two categories: left-deep tree and bushy tree. Steinbrunn et al.

(1997) analyzed the search space for left-deep tree and bushy tree,

and drew a conclusion that for n relations, there should be n !

possible results based on left-deep tree, while (
2(n − 1)

n − 1
)(n − 1)!

possible results based on bushy tree. To traverse the tree, there

are two approaches: top-down traversing through memorization

and bottom-up traversing via dynamic programming. A lot of work

has been done in these areas.

2.1. Heuristic plan generation

Heuristic plan generation algorithms include genetic algorithm,

particle swarm algorithm, ant colony algorithm, etc., which can

generate near optimal plans and have acceptable time and space

complexity. Viglas and Naughton (2002) proposed a rate-based

optimization framework that aims at maximizing the output rate

of query evaluation plans. They use two heuristic algorithms, local

rate maximization and local time minimization, to find locally

better plans. The proposed cost model has two parts, namely

the cost of handling an input from the left stream and the cost

of handling a right stream input. This rate-based optimization

works with infinite input streams, which is different with Impala

system. Gruenheid et al. (2011) proposed a permutation algorithm

to optimize queries for Hadoop MapReduce framework. Their

assumption is that in the framework, additional cost is incurred

when tuples have to be written back to disk in the reduce phases

and read again from disk in the next map phases. Therefore, the

cost-based optimizer sums up the cardinalities of all joins, which

generate tuples that have such I/O operations. They also introduce

an extension to the Hive Metastore, which stores metadata that

have been extracted on the column level of the user database.

This kind of extension is helpful for our optimization, as Impala

system also uses Hive Metastore as its metadata management

model. Ganguly et al. (1996) presented two heuristic cost func-

tions, which aim at achieving efficient cost models that accurately

approximate the response time of parallel query executions. They

also approximated the optimal degree of the parallelism of each

node in the operator tree. Sevinç and Co ̧s ar (2010) proposed a

GA (Genetic Algorithm) based query optimizer for distributed

QEPs (Query Execution Plans) generated by NGA (New Genetic

Algorithm) on their departmental cluster machine (Onder, 2010)

and came up with accurate communication cost formulas. The

cost model takes communication cost and processing cost into

account, and the communication cost is the maximum cost among

all nodes. Golshanara et al. (2014) proposed a multi-colony ant

algorithm for optimizing join queries in cluster environment,

where relations can be replicated but not fragmented. In addition,

two cost models (one based on total time, and the other based on

response time) are used, which considered both communication

cost and local processing cost. The algorithm can be improved by

using learning automata to adjust the algorithm parameters, which

is more promising than finding the parameters by trial and error.

2.2. Left-deep tree plan generation

Before the 1990s, researchers mainly paid attention to left-deep

tree based query optimization, because database applications were

stand-alone and left-deep tree based query plan had the advantage

of small search space and short optimization time. Recently, some

applications also prefer left-deep tree to reduce plan generation

time when there are many relations in the join.

Cluet and Moerkotte (1995) raised an algorithm that is more ef-

ficient than dynamic programming, and showed that the problem

of constructing optimal left-deep processing trees for star queries

is NP-complete. Zhou et al. (2014) proposed an improved algorithm

for DPhyp (Moerkotte et al., 2008) to shrink the search space from

bushy tree to left-deep tree, and integrated it into Impala system,

which shortens query time by 67%–80%. They also proposed a

cost model that took communication cost and tables in the join

into account, which was suitable for normal distributed systems.

However, due to the parallel execution characteristics of Impala

system, the effect of optimization has limitations for left-deep

search space, and the cost model does not fit for Impala system

when considering the execution flow depicted in Section 3.4 .

2.3. Bushy tree plan generation

As distributed systems appeared, researchers paid more atten-

tion to bushy tree based query optimization. This is because that

the child nodes of the same parent could run parallel at different

nodes, so the query efficiency could be improved.

Many top-down join optimization algorithms that generate

query plans in bushy tree form have been proposed recently.

DeHaan and Tompa (2007) gave a top-down join enumeration

algorithm MinCutLazy for connected graphs. They improved query

optimization efficiency by integrating branch-and-bound algo-

rithm. This algorithm performs well for acyclic query graphs, but

the complexity is high when dealing with cyclic query graphs.

Fender and Moerkotte (2012) presented an improved version Min-

CutLazyImp, which removed unnecessary steps and led to better

performance. However, this algorithm is difficult to implement and

there are some unnecessary calculations during the join enumera-

tion procedure. Fender et al. (2012) optimized the pruning strategy

and proposed a new top-down algorithm MinCutConservative,

which is easier to implement and a bit faster than MinCutLazy.

Download English Version:

https://daneshyari.com/en/article/4956499

Download Persian Version:

https://daneshyari.com/article/4956499

Daneshyari.com

https://daneshyari.com/en/article/4956499
https://daneshyari.com/article/4956499
https://daneshyari.com

