
The Journal of Systems and Software 125 (2017) 47–67

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automatic verification and validation wizard in web-centred end-user

software engineering

David Lizcano

a , ∗, Javier Soriano

b , Genoveva López

b , Javier J. Gutiérrez

c

a Universidad a Distancia de Madrid, UDIMA, Madrid, Spain
b Universidad Politécnica De Madrid, Madrid, Spain
c Universidad de Sevilla, Spain

a r t i c l e i n f o

Article history:

Received 7 October 2015

Revised 7 September 2016

Accepted 13 November 2016

Available online 15 November 2016

Keywords:

End-user software engineering

Web engineering

Reliability

End-user programming

visual programming

human-computer interaction

a b s t r a c t

This paper addresses one of the major web end-user software engineering (WEUSE) challenges, namely,

how to verify and validate software products built using a life cycle enacted by end-user programmers.

Few end-user development support tools implement an engineering life cycle adapted to the needs of

end users. End users do not have the programming knowledge, training or experience to perform devel-

opment tasks requiring creativity. Elsewhere we published a life cycle adapted to this challenge. With

the support of a wizard, end-user programmers follow this life cycle and develop rich internet applica-

tions (RIA) to meet specific end-user requirements. However, end-user programmers regard verification

and validation activities as being secondary or unnecessary for opportunistic programming tasks. Hence,

although the solutions that they develop may satisfy specific requirements, it is impossible to guarantee

the quality or the reusability of this software either for this user or for other developments by future

end-user programmers. The challenge, then, is to find means of adopting a verification and validation

workflow and adding verification and validation activities to the existing WEUSE life cycle. This should

not involve users having to make substantial changes to the type of work that they do or to their priori-

ties. In this paper, we set out a verification and validation life cycle supported by a wizard that walks the

user through test case-based component, integration and acceptance testing. This wizard is well-aligned

with WEUSE’s characteristic informality, ambiguity and opportunisticity. Users applying this verification

and validation process manage to find bugs and errors that they would otherwise be unable to identify.

They also receive instructions for error correction. This assures that their composite applications are of

better quality and can be reliably reused. We also report a user study in which users develop web soft-

ware with and without a wizard to drive verification and validation. The aim of this user study is to

confirm the applicability and effectiveness of our wizard in the verification and validation of a RIA.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The number of end-user programmers (people who program to

achieve the result of a program primarily for personal rather than

public use) (Ko et al., 2011) grows year by year and is much greater

than the number of professional developers (Scaffidi et al., 2005).

According to the US Bureau of Labor and Statistics, compared with

three million professional programmers in the United States, there

were more than 60 million end-user programmers (EUPs) using

spreadsheets and databases at work in early 2014, many writing

formulas and dashboards to support their job (Cao et al., 2014).

This has spawned a lot of interest in research into all aspects of

∗ Corresponding author.

E-mail addresses: david.lizcano@udima.es (D. Lizcano), jsoriano@fi.upm.es (J. So-

riano), glopez@fi.upm.es (G. López), javierj@us.es (J.J. Gutiérrez).

software development by end-user programmers and user-centred

software engineering.

At the start of our research, we defined a model designed to en-

able EUPs to handle components tailored to their experience and

problem domain knowledge (Lizcano et al., 2011a). The defined

model is based on components of different levels of abstraction.

Components and connectors, that is, elements that can be used to

set up a data flow among components of the same level, become

less detailed as we move up the hierarchy. We analysed the fea-

tures required by a visual EUP-centred development environment

empowering EUPs to effectively handle the defined components

and connectors in (Lizcano et al., 2011b).

The next step was to define web end-user software engineer-

ing (WEUSE) and to specify the analysis, design and implementa-

tion stages of a RIA life cycle as enacted by an EUP (Lizcano et al.,

2013). We proposed suitable mechanisms for supporting the activ-

http://dx.doi.org/10.1016/j.jss.2016.11.025

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.11.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.025&domain=pdf
mailto:david.lizcano@udima.es
mailto:jsoriano@fi.upm.es
mailto:glopez@fi.upm.es
mailto:javierj@us.es
http://dx.doi.org/10.1016/j.jss.2016.11.025

48 D. Lizcano et al. / The Journal of Systems and Software 125 (2017) 47–67

ities of the RIA life-cycle phases. The aim was to empower EUPs

to successfully compose the component graph and help them to

rapidly build a RIA adapted to a specific problem that they need to

solve. The reported WEUSE achieves this goal using a development

wizard (DW) composed of well-defined and structured tasks. This

wizard provides users with guidance to develop RIAs, which is out-

side the realms of their knowledge. The DW, implemented within

an end user-centred visual development environment, called FAST,

walks EUPs through these life-cycle stages. FAST is an EUP-centred

integrated development environment developed as part of a 7th

European framework programme project.

A RIA built by an EUP is an application composed of a set of

components with inputs and outputs. The bottom-level compo-

nents are able to invoke services and access web resources. They

are designed and then published in repositories shared by the pro-

prietors of the services/resources that are to be made visible. In or-

der to promote the end-user development (EUD) philosophy, they

are made accessible to EUPs or third parties. Users use EUD tools

(like Yahoo! Pipes and Dapper, Kapow, JackBe, FAST, and so on) to

access the above repositories and create personal compositions by

connecting up some of these bottom-level components with others

and/or building composite applications.

Even though EUPs run some tests to check the goodness of the

RIA that they have developed, they do not really perform a system-

atic verification and validation process in order to reliably check

that the built RIA is error free.

In this paper, we describe a WEUSE verification and validation

stage as a combination of test case generation and test case exe-

cution for testing a RIA at component, integration and acceptance

level. This verification and validation process assures that the de-

veloped RIA conforms to the end-user specification and meets the

needs for which it was built. During this stage, the users are as-

sisted by a What You See Is What You Test testing wizard (TW)

that walks untrained users through the implementation of a user-

centred component, integration and acceptance testing plan.

Note that the aim of the testing process is to find and locate

as many defects as possible, whereas the aim of the debugging

process is to fix and remove the detected defects. In traditional

software engineering, the testing team is responsible for testing,

whereas the development team carries out debugging. In the case

of WEUSE, however, the EUP performs both tasks. To do this, the

EUP first executes the TW and then fixes the bugs that the wizard

has detected and not automatically corrected. In the last analysis,

the aim of the WEUSE verification and validation process described

in this paper is to check that the software system meets the spec-

ifications and serves its intended purpose by applying the testing

and debugging processes.

Effective verification and validation should prevent errors be-

ing compounded by the reuse of buggy software. Therefore, EUPs

need to have access to an automatic system to validate their devel-

opments. Verification and validation should not, however, take too

much time or effort because EUPs view it as being an unnecessary

and unimportant process.

The WEUSE verification and validation stage includes three lev-

els of testing: component, integration and acceptance testing. The

unit components published in the catalogues have been built by

specialised software providers and should, in principle, work cor-

rectly. However, EUPs may publish parameterisations and composi-

tions based on these unit components, and these new ad-hoc com-

ponents should be tested. Component and integration tests are run

by the TW automatically to check that end-user software is error

free. Inputs are the endpoints of the range of each of the expected

data types. The TW runs acceptance tests based on data requested

from users. It uses black-box testing to check how the data flow

through the RIA. The TW displays the intermediate and final data

in tabular format, indicating whether or not the processed internal

and external data reach their destination. End users, who are prob-

lem domain experts, should then have no trouble with data checks.

Based on the execution of the test cases that it generates, the TW

will analyse components that generate any erroneous data items

identified by users and ask the DW to suggest an alternative de-

sign (based on data flows among components or other equivalent

components published in the catalogue). The RIA component, in-

tegration and acceptance tests are further divided into two stages:

wizard-driven test case generation and test case execution, as de-

scribed in Section 3 .

The remainder of the article is divided as follows. Section 2 in-

troduces research on the provision of support for the verification

and validation of EUDs. There is no support for such tasks in the

RIA field, but we have used earlier proposals in other EUD fields,

such as spreadsheets, in our research. Section 3 reports the pro-

posed verification and validation process for WEUSE, defining the

types of test cases to be executed at each level and implementa-

tion details of how the TW supports EUPs. Section 4 documents

our working hypotheses and the user study conducted to examine

the evaluation criteria. This section includes detailed information

on the user study to assure that it can be replicated in other fields.

It also includes a statistical study of the results. Section 5 discusses

threats to validity. Finally, Section 6 reports our conclusions, set-

ting out the major contributions of our research to the state of the

art and future lines of research that we intend to undertake.

2. Related work: end-user PROGRAMMER VERIFICATION and

validation

Spreadsheets were the first real examples of developments by

EUPs in the field of EUD (Rothermel et al., 2001; Chambers and

Erwig, 2009). Over recent years errors made by EUPs have led

to huge financial losses and defective quality at small and large

companies alike (losses that were documented up to 20 years ago

(Panko, 1995) and are still occurring). In response, research focused

on What You See Is What You Test has been conducted in order to

give users access to systematic testing procedures to validate their

spreadsheets (Burnett et al., 2002).

Surprise-Explain-Reward is one What You See Is What You

Test strategy (Wilson et al., 2003). This strategy employs surprise

to draw the user’s attention to software engineering tasks. Users

are then encouraged, through explanations and rewards, to fol-

low through with appropriate actions. This strategy has its roots

in three areas of research—research about curiosity (psychology),

Blackwell’s model of attention investment (psychology/HCI), and

minimalist learning (educational theory, HCI)—and has been used

in work on model-driven methods (Burnett, 2009). We have used

this strategy to provide users with visual guidance on the testing

procedure in order to check that the right RIA has been built right.

The procedure is explained in Section 3 .

As mentioned in the introduction, we regard verification as a

process of checking that the RIA conforms to the specifications

given by the analyst and designer, roles played in this case by the

end user. This process checks that the program implements all the

sentences specified by the user to define the RIA (each sentence

is a use case). On the other hand, validation, also performed by

the user, checks that the result of executing the RIA satisfies user

needs.

In the following, we summarise the end-user software engi-

neering verification and validation activities identified in the state

of the art, the problems that EUPs face within each activity and

what solutions are now available for these problems.

• Generation of test cases for RIA use case verification and vali-

dation:

Download English Version:

https://daneshyari.com/en/article/4956500

Download Persian Version:

https://daneshyari.com/article/4956500

Daneshyari.com

https://daneshyari.com/en/article/4956500
https://daneshyari.com/article/4956500
https://daneshyari.com

