
The Journal of Systems and Software 125 (2017) 197–206

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Creating an invalid defect classification model using text mining on

server development

Yihsiung Su

a , ∗, Pin Luarn

b , Yue-Shi Lee

c , Show-Jane Yen

c

a Graduate Institute of Management, National Taiwan University of Science and Technology, 2F, 196 Hopien N. St., Sanchung District, New Taipei City 241,

Taiwan
b Department of Business Administration, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 10607,

Taiwan
c Department of Computer Science and Information Engineering, Ming Chuan University, No. 5, The-Ming Rd., Gwei Shan District, Taoyuan County 333,

Taiwan

a r t i c l e i n f o

Article history:

Received 24 July 2016

Revised 28 November 2016

Accepted 5 December 2016

Available online 6 December 2016

Keywords:

Invalid defect

Classification

Text mining

Server development

Project management

BIOS

a b s t r a c t

Invalid defects, which are often overlooked, reduce development productivity and efficiency. This study

used exploratory study and text mining to answer three research questions related to invalid defects in

two research stages.

In the first stage, we filtered 231 invalid BIOS (basic input/output system) defects from the 3347 de-

fects of three server projects. These defects were from numerous function areas owned by virtual teams

located in Taiwan, China, and the United States. Results indicated that BIOS firmware demonstrates the

maximum number of defects and invalid defects. This firmware accounted for 43.3% defects and 33% in-

valid defects in server development. Results determined that invalid defect classification that includes

four types, namely, working as designed (WAD), user error, duplicate, and others. All of these types can

be grouped under the term WUDO. WAD accounts for the maximum of 45% of invalid defects in the

WUDO classification. In the second stage, this study determined a stable classification algorithm, namely,

decision tree C4.5, to classify the invalid defect types.

This study helps project teams for information technology products to classify the different invalid

defect types that developers and testers face. Results can improve project team productivity and mitigate

project risks in project management.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Invalid defects are often overlooked by development teams, and

developers do not have to provide any solution for these defects

when the products are launched. However, teams still need to

spend resources on investigating these invalid defects. Defects are

unavoidable during product development, and they are a key factor

in affecting project success. Developers must investigate the root

causes of valid defects, and solutions must be provided to fix these

defects. Test engineers must validate these defects to achieve qual-

ity goals. However, using resources to investigate invalid defects

is impractical. Teams must determine the root causes of invalid

defects to improve development efficiency and to reduce project

risks, and project teams must apply lessons learned for invalid de-

fect prevention and reduction.

∗ Corresponding author.

E-mail addresses: simonyhsu@gmail.com (Y. Su), luarn@ba.ntust.edu.tw (P. Lu-

arn), leeys@mail.mcu.edu.tw (Y.-S. Lee), sjyen@mail.mcu.edu.tw (S.-J. Yen).

Few studies have been conducted to identify the causes of in-

valid defects, and no study has attempted to demonstrate the

causes of invalid defects in server development, which involves

hardware, software, firmware, operation system (OS), and other

adapters. This study aims to classify invalid defect types for invalid

defect elimination and reduction by identifying the root causes of

invalid defects and by creating an invalid defect classification (IDC)

model.

First, this study aims to identify invalid defects and to deter-

mine which functional area demonstrates the maximum number

of defects and invalid defects. Second, developers and testers re-

view and study the defect reports in this functional area and then

determine the causes of invalid defects. Third, we establish the IDC

based on the causes of invalid defects. Finally, we use five classifi-

cation algorithms, namely, decision tree C4.5, naïve Bayesian classi-

fication, Bayesian network, logistic regression, and neural network,

to build the classification model (Wu et al., 2008). These text min-

ing algorithms are used in demonstrating the accuracy of each al-

gorithm in the IDC model, and the best solution for this model

http://dx.doi.org/10.1016/j.jss.2016.12.005

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.12.005&domain=pdf
mailto:simonyhsu@gmail.com
mailto:luarn@ba.ntust.edu.tw
mailto:leeys@mail.mcu.edu.tw
mailto:sjyen@mail.mcu.edu.tw
http://dx.doi.org/10.1016/j.jss.2016.12.005

198 Y. Su et al. / The Journal of Systems and Software 125 (2017) 197–206

is identified. The following three research questions (RQ) are ex-

plored in this study.

RQ1: Which function area reflects the maximum number of de-

fects and invalid defects in server development projects?

RQ2: What are the classifications of invalid defects during

server development?

RQ3: Can we create an IDC model to classify invalid defect

types?

We design two research stages to answer the three research

questions. In the first stage, we collect samples from the three

server projects, extract invalid defects, have experts decide the root

causes of the invalid defects, and establish an IDC to answer RQ1

and RQ2.

In the second stage, this study uses the results of Stage 1 and

text mining to build the classification models and to compare the

performance for answering RQ3.

In brief, the process of text mining in the second stage includes

the following steps:

1. Dataset collection (from the results of Stage 1)

2. Keyword extraction

3. Feature vector creation

4. Using two methods to train and evaluate the classification mod-

els

i. In Method 1 , we use the datasets of Project 1 (Proj 1) and

Project 2 (Proj 2) to train the classification models, and the

dataset of Project 3 (Proj 3) to evaluate the accuracy of the

classification models.

ii. In Method 2 , we use the datasets of Project 1 (Proj 1),

Project 2 (Proj 2), and Project 3 (Proj 3) to train the classifi-

cation models and apply a 10-fold cross validation (Kohavi,

1995) to evaluate the accuracy of the classification models.

2. Review of literature and related work

Software engineering is also concerned with software project

management, development process, tools, and methods to support

software production (Sommerville, 2011). For the embedded soft-

ware, one of the differences in software engineering is that the

engineer needs additional knowledge related to electronic devices

(Oshana and Kraeling, 2013). Embedded software must react to any

event generated by the hardware. For example, basic input/output

system (BIOS), which is a boot firmware, performs power initia-

tion on a server. The BIOS in this server system is embedded in a

system hardware. It is often in a read-only memory and usually re-

sponds in real time. Embedded software is very important because

it constitutes nearly all electronic devices (Sommerville, 2011).

Poppendieck and Poppendieck (2003) introduced lean software

development (LSD) and stated that a defect is one of seven wastes,

and eliminating waste is one of seven principles in LSD. The per-

formance index of project success aims to achieve project scope

on time and within budget. The majority of projects are managed

to meet these targets using the book A Guide to the Project Man-

agement Body of Knowledge (PMBOK Guide) , which presents a set

of standard terminology and guidelines for projects as well as in-

troduces the related knowledge, tools, processes, skills, and tech-

niques (Project Management Institute, 2013).

In addition to achieving the performance index of project suc-

cess, increasing productivity and efficiency is another project team

and organization goal. Defect reduction and prevention is a major

factor to achieve the aforementioned goal. Causal analysis and res-

olution (CAR) is a process of maturity level 5 in Capability Maturity

Model Integration (CMMI). Teams can use CAR to identify causes of

selected defects and to prevent defects in the future. These effec-

tive process changes can result in process improvement to meet

the optimized target (CMMI Product Team, 2010).

Fig. 1. Defect state diagram.

2.1. Invalid defects

Invalid defects, which are often overlooked by a project team,

are rarely discussed at meetings before a project closes. Wang et

al. (2011) described the percentage of unclear defect reports and

invalid defect reports in software products. They also tested the

improvement practices based on the causes of unclear defect re-

ports and invalid defect reports. According to their research, the

proportion of invalid defect reports is approximately 26% and 35%

of test engineers submit these reports. Invalid defect reports usu-

ally delay a schedule and increase the amount of team effort to

identify problems and re-communication.

Sun (2011) stated that the average percentage of invalid de-

fects in mobile application is 8.31%, and the causes include errors

in testing and external systems, misunderstandings on functional-

ity and test environment, and insufficient background knowledge.

Kaplan (1993) introduced defect prevention process, which offers

an opportunity to save millions of dollars in development cost.

First, this process aims to identify defects, and it suggests preven-

tive action by causal analysis teams. Second, action teams priori-

tize and implement improved process and provide a feedback on

the status of pending improvements. Third, team members receive

feedback on process changes in project kickoff meetings. Finally,

team members track defects and actions using database and data

collection.

Li et al. (2012) described that software companies often use a

defect tracking system (DTS) as a defect management tool to en-

sure that a defect is fixed. Software quality can be improved for

future projects using the data in a DTS. One example of a DTS that

enables defect and change tracking and management is IBM Ra-

tional ClearQuest (CQ) (Wahli, 2004). Taiwan Development Center

(TDC) used this tool to manage defects created by each team dur-

ing a product development lifecycle. In this DTS, three major roles

exist: owners, submitters, and stakeholders. The defect submitter

(submitter) uses CQ to issue change requests, to verify the defects

fixed, and to add information to change requests. The defect owner

(owner) is responsible for investigating the defect, providing the

fixes for the defect, and eliminating the defect. The stakeholders

are managers, project managers, or any team member who wants

to review the status of the defects. A DTS can be accessed by a

web browser; thus, everyone can query the defects anytime and

anywhere.

2.2. Definition of invalid defects

Invalid defects are defects determined through an invalid defect

path (IDP), and the owner does not provide any fix to close these

defects. Fig. 1 shows the defect state diagram on DTS. Two major

paths, namely, valid defect path (VDP) and IDP, exist to identify if

the defect is valid or invalid.

Download English Version:

https://daneshyari.com/en/article/4956508

Download Persian Version:

https://daneshyari.com/article/4956508

Daneshyari.com

https://daneshyari.com/en/article/4956508
https://daneshyari.com/article/4956508
https://daneshyari.com

