
The Journal of Systems and Software 125 (2017) 354–364

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Software Systems Engineering programmes a capability approach

�

Carl Landwehr a , Jochen Ludewig

b , Robert Meersman

c , David Lorge Parnas d , ∗,
Peretz Shoval e , Yair Wand

f , David Weiss g , Elaine Weyuker h

a Cyber Security Policy and Research Institute, George Washington University, Washington, DC, USA
b Institut für Software, Universität Stuttgart, Stuttgart, Germany
c Institut für Informationssysteme und Computer Medien (IICM), Fakultät für Informatik, TU Graz, Graz, Austria
d Middle Road Software, Ottawa, Ontario, Canada
e Ben-Gurion University, Be’er-Sheva, Israel
f Sauder School of Business, University of British Columbia, Vancouver, BC, Canada
g Iowa State University, Ames Iowa, USA
h Mälardalen University, Västerås, Sweden and University of Central Florida, Orlando, FL USA

a r t i c l e i n f o

Article history:

Received 24 May 2016

Revised 22 November 2016

Accepted 19 December 2016

Available online 23 December 2016

Keywords:

Engineering

Education

Software education

Information systems

Software design

Software development

Software documentation

a b s t r a c t

This paper discusses third-level educational programmes that are intended to prepare their graduates for

a career building systems in which software plays a major role. Such programmes are modelled on tradi-

tional Engineering programmes but have been tailored to applications that depend heavily on software.

Rather than describe knowledge that should be taught, we describe capabilities that students should

acquire in these programmes. The paper begins with some historical observations about the software

development field.

© 2016 Elsevier Inc. All rights reserved.

1. Background

Many universities have created educational programmes to

teach the development of software intensive systems. There is a

great deal of variation among these programmes and a number

of programme names are used. In this paper, we use the term

“Software Systems Engineering” (SSE) to refer to such programmes.

Some types of SSE programmes are discussed in more detail in

Section 5 of this paper to illustrate what we mean by Software

Systems Engineering.

There have been many efforts to define bodies of knowledge

for computing disciplines. A list of some of these efforts can be

found in The Joint Task Force for Computing Curricula (2005).

Some (e.g., Parnas, 1998 ; Lutz et al., 2014 ; Ardis et al., 2015) de-

� Work on this paper began while the authors served on a committee advising

Israel’s Council of Higher Education that was chaired by David Parnas. The opinions

presented in this paper are the personal opinions of the authors. All authors made

substantive contributions to the paper; they are listed in alphabetical order. David

Parnas is the corresponding author.
∗ Corresponding author.

E-mail address: parnas@mcmaster.ca (D.L. Parnas).

scribe programmes that have been developed by individual institu-

tions. Others, (e.g., Computing Curricula, 2005), compare the bod-

ies of knowledge associated with various computing disciplines. In

Glass et al. (2004) , there is a comparison of computing disciplines

based on the research areas associated with each. The SE2004 re-

port (Lethbridge et al., 2006), (and its updated version SE 2014

(Ardis et al., 2015)), propose knowledge that should be taught in

undergraduate software oriented programs. They also provide sam-

ple courses and curriculum patterns.

This paper takes a complementary approach. Noting that:

• Science programmes present an organized body of knowledge

and teach students how to verify and extend that knowledge.
• Engineering programmes present an organized body of knowl-

edge and teach students how to apply that knowledge when

developing products.

Instead of discussing the knowledge that would be conveyed

to students during their education, this paper focusses on things

that a software developer must be able to do while develop-

ing and maintaining a product. Like Lethbridge et al. (2006) , and

Ardis et al. (2015) , this paper discusses a set of Engineering pro-

grammes in which software development plays a central role; un-

http://dx.doi.org/10.1016/j.jss.2016.12.016

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.12.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.12.016&domain=pdf
mailto:parnas@mcmaster.ca
http://dx.doi.org/10.1016/j.jss.2016.12.016

C. Landwehr et al. / The Journal of Systems and Software 125 (2017) 354–364 355

like Lethbridge et al. (2006), and Ardis et al. (2015) , it does not

prescribe courses or curricula. Rather than describing knowledge

or research areas, we propose a body of capabilities . Many different

curricula could help students to acquire the capabilities described

in this paper.

Because software is a rapidly changing field, we expect that the

associated “body of knowledge” will continue to grow quickly and

curricula will need to be revised frequently. In contrast, the ca-

pabilities discussed in this paper are fundamental. We base them

on observations that were made when the profession of software

development was first identified (Brooks, 1995 ; Buxton and Ran-

dell, 1969 ; Naur and Randell, 1968). They were needed then, they

are needed now, and we expect them to be needed in the far fu-

ture.

We do not believe that the capability approach is a replacement

for “Body of Knowledge” or Curriculum proposals. We believe that

looking at capabilities as this paper does, provides a perspective

that will help institutions to develop, compare, and update curric-

ula.

• Section 2 of this paper reviews discussions that took place

when the term “Software Engineering” and similar terms were

first introduced.
• Section 3 discusses some capabilities that Software Systems En-

gineers need.
• Section 4 discusses the role of projects in Software Systems En-

gineering education.
• Section 5 describes a few of the many distinct disciplines that

fall under the rubric of Software Systems Engineering.
• Section 6 discusses how to use this paper when designing or

revising a curriculum.
• An appendix provides a more detailed discussion of the most

important learning outcomes for Information Systems Engineer-

ing.

2. Searching for a definition of “Software systems engineering”

In the 1960s, some computer scientists began to use the phrase

“Software Engineering”1 without providing a clear definition. They

expressed the hope that software developers would learn to con-

struct their products with the discipline and professionalism as-

sociated with professional engineers (Buxton and Randell, 1969 ;

Naur and Randell, 1968).

When the term “Software Engineering” was first introduced,

many asked, “How is that different from programming?” More re-

cently, when post-secondary “Software Engineering” programmes

were introduced, some asked, “How is that different from Com-

puter Science?” Some who asked these questions questioned the

need for a new term; others wanted to know what, beyond pro-

gramming and computer science, would be taught to students of

“software engineering”. In the discussion that followed, two sim-

ple, but consequential, answers emerged. Although both definitions

are old, they have withstood the test of time, are consistent with

current usage, and remain relevant today

2.1. Brian Randell’s answer

One of the best answers to the question was provided by Prof.

Brian Randell, one of the organizers of the first two international

Software Engineering conferences and co-author of two frequently

referenced reports on those meetings (Buxton and Randell, 1969 ;

1 Historically, the term “Software Engineering” was used. However, we believe

that what is said in this section applies to all Software Systems Engineering disci-

plines.

Naur and Randell, 1968). In private discussions, he described Soft-

ware Engineering as “multi -person development of multi- version

programs”. This pithy phrase implies everything that differentiates

professional software engineering from programming. Software en-

gineers must be able to work in teams to produce programs that

will be used, and revised, by people other than the original devel-

opers. Although performing that job requires programming skills,

many other capabilities are required as well.

2.2. Fred Brooks’ answer

The diagram below appears In Fred Brooks’ classic book, “The

Mythical Man-Month” (Brooks, 1995). The vertical dimension de-

notes “productizing” and the horizontal one “integration”.

Fred Brooks’ explanation of why software engineering is more

than programming. 2

• By testing, documenting, and preparing a program for use and

maintenance by other people, one transforms that program to

a “programming product”.
• By integrating a program with other, separately written, pro-

grams, one moves from a program to what Brooks called “a

programming system”.
• Doing both of these results in a “programming systems prod-

uct”. Going from a program to a programming systems product

results in a massive increase in cost and effort.

Brooks’ formulation, like Randell’s, makes it clear that there is

much more than programming skill required of a software engi-

neer. Software engineers must master programming, but they must

also be able to integrate separately written programs and “produc-

tize” the result.

3. What should Software Systems Engineers be prepared to do?

The decision to create Software Systems Engineering pro-

grammes that are distinct from “Computer Science” programmes

makes these old questions relevant today. We have to ask how

Software Systems Engineering programmes should differ from

Computer Science Programmes and what criteria should be applied

when evaluating them.

2 Figure redrawn from (Brooks, 1995). The “x3” annotation, denotes a 3-fold in-

crease in effort.

Download English Version:

https://daneshyari.com/en/article/4956518

Download Persian Version:

https://daneshyari.com/article/4956518

Daneshyari.com

https://daneshyari.com/en/article/4956518
https://daneshyari.com/article/4956518
https://daneshyari.com

