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a  b  s  t  r  a  c  t

In  this  paper  a class  of hybrid-fuzzy  models  is presented,  where  binary  membership  functions  are  used  to
capture the  hybrid  behavior.  We  describe  a  hybrid-fuzzy  identification  methodology  for  non-linear  hybrid
systems with  mixed  continuous  and  discrete  states  that  uses  fuzzy  clustering  and  principal  component
analysis.  The  method  first determines  the hybrid  characteristic  of  the  system  inspired  by an  inverse  form
of  the  merge  method  for  clusters,  which  makes  it  possible  to  identify  the  unknown  switching  points  of  a
process  based  on just  input–output  (I/O)  data.  Next,  using  the detected  switching  points,  a hard  partition
of  the I/O  space  is obtained.  Finally,  TS fuzzy  models  are  identified  as submodels  for  each  partition.  Two
illustrative  examples,  a hybrid-tank  system  and  a  traffic  model  for  highways,  are  presented  to  show  the
benefits  of the  proposed  approach.
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1. Introduction and backgrounds

Hybrid systems represent a class of dynamical systems that con-
tain continuous and discrete/integer variables. Different types of
models can be used to represent hybrid systems [1,2], for example
mixed logical dynamic (MLD) models, complementarity systems,
piece-wise affine (PWA) models, max–min plus scaling systems,
timed or hybrid Petri-nets, differential automata, switched sys-
tems, hybrid inclusions, and real-time temporal logics, among
others. Each sub-class has its own advantages over the others.
For example, control techniques have been developed for MLD
hybrid models, stability criteria for PWA  systems, and conditions
of existence and uniqueness of solution trajectories for linear com-
plementarity systems (see [3,4] and the references within).

For non-linear systems, a broad family of identification method-
ologies are available, for fuzzy, neural networks, neuro-fuzzy
models [5–9]. However, few methodologies consider non-linear
models with continuous and discrete variables, i.e. identification
of hybrid systems. In general, the identification of hybrid systems
requires to solve two issues: to classify the different modes of oper-
ation (discrete behavior) and to estimate the parameters for each
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mode. Assuming prior knowledge about the discrete modes is not
the interest of this paper, because the identification of the model
parameters for each mode can be performed straightforwardly
using conventional identification techniques. In the literature, the
identification methods for hybrid systems mainly focus on Piece-
wise AutoRegressive eXogenous (PWARX) systems. In [10] an
extensive comparison between some of those methods and their
drawbacks is presented, and in [11] a recent and complete review of
identification methods for hybrid systems (including among other
topics like system description, state estimation, control, etc.) can
be found. Next, some of those procedures are briefly described.

1.1. Identification methods for hybrid systems

Ferrari-Trecate et al. [12] propose a methodology for the
identification of discrete-time hybrid systems in the PWA  form,
formulated as a discontinuous PWA  map. The algorithm is based
on clustering, linear identification, and pattern recognition tech-
niques. An algebraic identification procedure to cope with the
identification problem of Switched AutoRegressive eXogenous
(SARX) systems was proposed by Ma  and Vidal [13]. Multiple
ARX models are encoded in a single polynomial expression that
decouples the determination of parameters from the switching
mechanism. The Bayesian procedure for the identification of Piece-
wise AutoRegressive eXogenous (PWARX) systems proposed by
Juloski et al. [14], exploits some prior knowledge about the dis-
crete states and parameters of the submodels. The parameters of
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68 A. Núñez et al. / Applied Soft Computing 17 (2014) 67–78

submodels are treated as random variables, and described through
their probability density functions. A bounded-error procedure was
proposed by Bemporad et al. [15] in order to identify PWARX
systems. The main feature of the method is to ensure that the iden-
tification error is bounded for all data points. Nakada et al. [16]
address the problem of identifying PWARX systems by using sta-
tistical clustering. The method consists of clustering the measured
data, while estimating the boundary hyperplane and the param-
eters. Gegundez et al. [17] present an identification method for
PWA  systems based on fuzzy clustering and competitive learning.
The method estimates the number of submodels of the system, the
parameters corresponding to each submodel, and the regions in
the regression space. Lauer et al. [18] propose a nonlinear hybrid
system identification method based on kernel functions in order to
estimate arbitrary nonlinearities without prior knowledge.

1.2. Fuzzy identification

Many advances in fuzzy systems identification and applications
are available in the literature [19–24], including observers [25,26]
and control methods [27,28]. Nefti et al. [29] present a method for
merging fuzzy sets based on clustering in the parameter space. The
fuzzy sets are replaced by the most compatible prototypical fuzzy
set, which is determined from a inclusion-based clustering algo-
rithm. Hadjili and Wertz [30] propose an identification method
for Takagi–Sugeno (TS) models, incorporating the selection of opti-
mal  rules and input variables. The subtractive clustering algorithm,
based on compactness and the separation of clusters, is performed
in order to determine the number of rules. Roubos and Setnes
[31] propose a complexity-reduction algorithm based on genetic-
algorithm optimization procedures to find redundancy among the
rules with a criterion based on maximum accuracy and maximum
set similarity. In addition, Kim et al. [32] present a combined iden-
tification method, based on the TS and Sugeno–Yasukawa models.
The approach implements fuzzy regression clustering for initial
tuning of the parameters and a gradient-descent method to adjust
them accurately. In Abonyi et al. [33] a modified Gath–Geva fuzzy
clustering algorithm for the identification of TS models is proposed
to directly obtain the parameters of the membership functions. A
linear transformation of the input variables makes it possible to
recover accurately the fuzzy partition of the antecedents. Li et al.
[34] propose a new fuzzy c-regression model clustering algorithm
where the clustering prototype in fuzzy space partition is a hyper-
plane. The new clustering algorithm is used in the identification of
TS fuzzy model, obtaining good results in the identification of the
premise parameters of the model.

1.3. Hybrid-fuzzy identification

For hybrid-fuzzy models, stability analysis and control designs
have been proposed in the literature [35,36]. Regarding the
identification of hybrid-fuzzy systems, although most of the devel-
opments have been made in conventional fuzzy systems, a few
hybrid-fuzzy identification methods have been proposed. Palm and
Driankov [37] present a hierarchical identification approach for
fuzzy switched systems. The proposed method considers a black-
box fuzzy identification approach by using fuzzy clustering and
measurable discrete states in order to obtain the hybrid-fuzzy
model. Although good performance is obtained, prior knowledge
about the discrete modes is required. Next, Girimonte and Babuška
[38] describe two structure-selecting methods for non-linear mod-
els with mixed discrete and continuous inputs. The first method,
based on fuzzy clustering, uses fuzzy sets to obtain the rele-
vant inputs. The second approach involves an induction algorithm
included in a search method. The results show that fuzzy cluster-
ing is faster in terms of computation time. Zeng et al. [39] propose

a new representation theorem for hierarchical systems when a dis-
crete input space is considered. The theorem states that one-to-one
mappings for low-level functions are required to obtain a flexible
hierarchical representation. Moreover, they demonstrate that flex-
ible hierarchical fuzzy systems satisfy the universal approximation
property, which allows us to estimate any hierarchical function to
any degree of accuracy. A new hierarchical structure of hybrid sys-
tems integrating modeling and control is presented by Cheng et al.
[40], where the fuzzy controller is synthesized based on the iden-
tification of continuous and discrete components. The authors of
[40] assume that measurements of the discrete components are
available, which allows the use of fuzzy adaptive identification
techniques or other ways to directly learn a TS model by cluster-
ing or by identifying a neuro-fuzzy model for each of the separate
regions. In our paper, direct measurements of the discrete com-
ponent are not available, and as a consequence it is not possible
to do an experimental contrast within those other hybrid-fuzzy
identification frameworks.

In this paper, a new identification method is proposed for non-
linear hybrid systems that identifies first the discrete transitions
and then all other non-linearities through fuzzy models only using
input–output data of the process, where the main difference with
the literature is that prior knowledge of the discrete modes is not
required. Next the hybrid-fuzzy models and the identification prob-
lem are presented.

2. Problem statement

For the modeling of hybrid systems two  of the most popular
model types used in the literature are piecewise affine (PWA) sys-
tems and mixed logical and dynamical (MLD) systems [11]. In this
paper the use of another type of model called hybrid-fuzzy systems
is proposed, which combine the characteristics of fuzzy models to
represent nonlinearities, and of hybrid systems to include quan-
tized variables.

A hybrid discrete-time nonlinear dynamic system is considered
with input u(t) ∈ R

m, and to explain the identification method a sin-
gle output y(t) ∈ R  is assumed (the method is easily extendible for
multiple outputs). Let ut−1 = [uT (t − 1),  . . .,  uT (t − nb)]

T ∈ R
m · nb

be past inputs, and yt−1 = [y(t − 1),  . . .,  y(t − na)]T ∈ � ⊂ R
na be

past outputs, up to time t − 1, where na and nb are the model orders
(given a priori). The class of hybrid systems considered is described
as:

y(t) =
s∑

i=1

fi(y
t−1, ut−1)�i(y

t−1),

�i(y
t−1) =

{
1, if yt−1 ∈ �i

0, otherwise
,

(1)

where s is the number of discrete modes (submodels). The local
behavior of the system is described by the functions fi(·) and the
discrete mode �i(yt−1) is a binary variable that equals 1 if yt−1

belongs to the region of �i ⊂ R
na , and 0 otherwise. The regions �i

form a complete partition of the regressor set �, i.e.
⋃s

i=1�i = �
and �i∩ �j = ∅, ∀i /= j. Note that discrete dynamics (transitions) of
the system are assumed to occur when yt−1 satisfies some condi-
tions, and they will not depend on the inputs. The aim in this work
is to present a systematic method for determining the functions
fi(·) and the regions �i given only the input–output data of the pro-
cess. The functions fi(·) could be any non-linear function that will
be identified by the TS models and the regions �i are assumed to
be convex polyhedra, described by

�i = {yt−1 ∈ Rna : Hiy
t−1 � hi} (2)
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