
ARTICLE IN PRESS

JID: JSS [m5G; July 27, 2016;15:34]

The Journal of Systems and Software 0 0 0 (2016) 1–12

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

ReSeer: Efficient search-based replay for multiprocessor virtual

machines

Tao Wang

b , Jiwei Xu

b , Wenbo Zhang

b , ∗, Jianhua Zhang

b , Jun Wei a , b , Hua Zhong

b

a State Key Laboratory of Computer Science, Beijing, 100190, China
b Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China

a r t i c l e i n f o

Article history:

Received 5 November 2015

Revised 20 July 2016

Accepted 21 July 2016

Available online xxx

Keywords:

Deterministic replay

Virtual machine

Genetic algorithm

Memory checkpoint

Xen

a b s t r a c t

Efficient replay of virtual machines is important for software debugging, fault tolerance, and performance

analysis. The current approaches of replaying virtual machines record the details of system execution at

runtime. However, these approaches incur much overhead, which affects the system performance. Es-

pecially, in a multiprocessor system, recording the shared memory operations of multiple processors

leads to a large amount of computing overhead and log files. To address the above issue, this paper

proposes ReSeer—a search-based replay approach for multiprocessor virtual machines. ReSeer consists of

three phases including record, search, and replay. In the record phase, we record only necessary non-

deterministic events at runtime, and incrementally take memory checkpoints at a defined interval. In the

search phase, we encode all the possible execution paths as binary strings, and use a genetic algorithm

to search expected execution paths achieving the expected checkpoint. In the replay phase, we replay

the system execution according to the searched execution paths and the logged non-deterministic events.

Compared with current approaches, ReSeer significantly reduces performance overhead at runtime by

searching expected execution paths instead of recording all the operations of accessing shared memory.

We have implemented ReSeer, and then evaluated it with a series of typical benchmarks deployed on

an open source virtual machine—Xen. The experimental results show that ReSeer can reduce the record

overhead at runtime efficiently.

© 2016 Published by Elsevier Inc.

1. Introduction

Virtualization allows multiple operating systems to run on a

single physical machine by partitioning physical resources into

multiple virtual machines (VM). Each VM protected and isolated

from the others performs as an individual physical machine. Users

of each VM execute their own applications without fearing the

system crashes caused by other VMs on the same physical ma-

chine. Furthermore, the virtualization consolidation increases the

resource utilization of physical machines, and reduces the cost

of system management. Thus, virtualization, a core technology of

cloud computing, is prevalent in recent years (Barham et al., 2003).

However, the virtualization increases the complexity of debug-

ging software systems, because we ought to analyze both the VMs

and software systems. Replay is important for software debugging

(Chow et al., 2008), fault tolerance (Bressoud and Schneider, 1996),

performance analysis (Attariyan et al., 2012), and system forensics

(Dunlap et al., 2002). Because online program analysis brings sig-

∗ Corresponding author.

E-mail addresses: wangtao@otcaix.iscas.ac.cn (T. Wang), zhangwenbo@otcaix.

iscas.ac.cn (W. Zhang).

nificance performance overhead, system administrators often of-

fline locate faults with the recorded logs, when some faults are

triggered (Chow et al., 2008). Thus administrators can collect ex-

ecution details in the replay phase to inspect the entire state of

the system, and then locate the root causes of problems. Current

replay approaches are mainly implemented in the process level for

debugging parallel programs, whereas the replay in the virtual ma-

chine monitor (VMM) level is also necessary. First, as the virtual-

ization has been widely adopted in cloud computing, the replay

system can be easily deployed and applied with VMM. Second, be-

cause VMM can observe the system calls, signals, and interrupts of

guest operating systems, the replay system for VMs can transpar-

ently record the entire execution information of an operating sys-

tem in detail. For example, a deliberate hacker can intrude operat-

ing systems, and eliminate log files in the operating system. If the

replay system records all the execution information in the VMM

level, we can accurately analyze the suspicious operations of the

hacker in the operation system (Rosenblum and Garfinkel, 2005).

The replay for VMs is often effective in debugging faults related

with operating systems and VMs in practice (Dunlap et al., 2008).

For example, Dunlap et al. (2002) debug a non-deterministic at-

tack caused by the ptrace race condition in Linux kernels before

http://dx.doi.org/10.1016/j.jss.2016.07.032

0164-1212/© 2016 Published by Elsevier Inc.

Please cite this article as: T. Wang et al., ReSeer: Efficient search-based replay for multiprocessor virtual machines, The Journal of Systems

and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.032

http://dx.doi.org/10.1016/j.jss.2016.07.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:wangtao@otcaix.iscas.ac.cn
mailto:zhangwenbo@otcaix.iscas.ac.cn
http://dx.doi.org/10.1016/j.jss.2016.07.032
http://dx.doi.org/10.1016/j.jss.2016.07.032

2 T. Wang et al. / The Journal of Systems and Software 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: JSS [m5G; July 27, 2016;15:34]

version 2.2.19; King et al. (2005) debug the USB device driver,

System call, Kernel race condition, and mremap bugs. Note that

since the replay systems in the VMM level can be used to de-

bug the low-level faults manifested in the operating systems or

the physical resources. For example, if an application utilizes a

USB device but cannot get a response, the system administrator

can use the replay system to observe and analyze the operations

on the device, and locate the root cause of the fault. However,

the replay system cannot deal with the application-level faults re-

lated with the processing logic of an application, and the faults

should be debugged with the replay techniques in the application

level.

A typical replay system usually has a record phase and a re-

play phase. In the record phase, all non-deterministic events are

recorded in log files at runtime, such as uncertain instructions

(e.g., RDTSC), uncertain functions (e.g., random function), system

calls (i.e., getpid), interrupts (e.g., keyboard), signals (e.g., SIGKILL),

traps, DMAs, and IO devices (e.g., printer). In the replay phase,

the replay system deterministically executes the instructions and

the non-deterministic events recorded in the log files. Unipro-

cessor replay approaches in the VMM level, such as Hypervisor

(Bressoud and Schneider, 1996) and Revirt (Dunlap et al., 2002),

record and replay the whole guest system. However, multiproces-

sor replay is much more complicated, because it deals with the

frequent access races of shared memory. A typical approach for

multiprocessor VMs is to record the orders of accessing shared

memory (Dunlap et al., 2008 ; Laadan et al., 2010), but the record-

ing operations incur significant performance overhead leading to a

much slowdown and a large log size. To reduce the above over-

head, current deterministic replay approaches can be classified as

hardware assisted schemes and software-only schemes. The hard-

ware assisted schemes use dedicated hardware supports to record

shared memory operations with acceptable overhead and a lim-

ited log size (Basu et al., 2011 ; Tang et al., 2013 ; Honarmand and

Torrellas, 2014). However, these schemes are limited in some spe-

cific modified processors. On the other hand, the software-only

schemes record or use reasoning techniques to deduce the shared

memory operations. These schemes can be widely used in kinds of

processors and applications, but the current approaches often have

impractical significant performance overhead (Dunlap et al., 2008 ;

Lee et al., 2012 ; Yu et al., 2012 ; Chen and Chen, 2013).

This paper proposes ReSeer, a search-based VM replay approach

for multiprocessor VMs, which includes three phases, i.e., record,

search and replay. In the record phase, we record only neces-

sary non-deterministic events at runtime, and take memory check-

points at a defined interval. In the search phase, we encode all

of the possible execution paths as binary strings, and use a ge-

netic algorithm (GA) to search expected execution paths achiev-

ing the expected checkpoint. In the replay phase, we replay the

system execution according to the searched paths and the non-

deterministic events recorded in the log files. Compared with cur-

rent approaches, ReSeer significantly reduces the record overhead

at runtime by acquiring similar execution paths of the available

checkpoint, rather than the exact same paths of the original ex-

ecution. Furthermore, because GA uses a parallel population to

search expected execution paths, we can improve the searching ef-

ficiency with parallel computing frameworks (e.g., MapReduce and

Spark). The experimental results show that ReSeer can efficiently

reduce the record overhead at runtime. Compare with SMP-Revirt,

ReSeer reduces about 32.53% computation overhead in Xen, and

improves performance by 21.43% in the compressing of Freebench,

8.69% in the decompressing of Freebench, 55.42% in the disk read-

ing of Dbench, 57.14% in the disk writing of Dbench, 61.91% in the

packet sending of Netperf, and 48.29% in the packet receiving of

Netperf.

The contributions of this paper are summarized as follows:

• We proposed an efficient search-based replay approach – Re-

Seer, which searches execution paths instead of recording the

access races of shared memory. That means it records much

fewer non-deterministic events than current approaches do.

Therefore, ReSeer can significantly reduce the record overhead

and the size of log files.
• ReSeer searches the execution paths between any two adja-

cent checkpoints rather than the whole execution path from

the start to the end of the system execution. As a result, we

can search only in a suspicious period, and search the execu-

tion paths in parallel.
• ReSeer uses the page protection in Xen to search the execution

paths related with the operations of writing shared memory.

Compared with current search-based approaches searching the

entire orders of accessing memory, ReSeer is efficient by limit-

ing the search space.
• ReSeer searches the expected execution paths with a

heuristic algorithm GA, which improves the search efficiency

and makes it possible to use parallel computing frameworks.
• We have implemented ReSeer, and evaluated it with a series of

benchmarks deployed on Xen. The experimental results show

that ReSeer can effectively reduce the record overhead.

The rest of this paper is organized as follows. Section 2 presents

the background of the virtualization technology. Section 3 presents

ReSeer — our search-based replay approach for multiprocessor

VMs. Section 4 presents the experimental results. Section 5 dis-

cusses the related work. Section 6 concludes this paper and directs

the future work.

2. Background

2.1. Virtualization and Xen

Virtualization enables multiple VMs sharing physical resources

to run on a single physical machine. VMM running VMs virtualizes

computing, storage, and network resources to divide these phys-

ical resources into virtualized units. VMs, which are isolated from

one another and imperceptible to the guest operating systems (OS),

apply and use these virtualized units exclusively. VMM schedules

the virtualized resources of these VMs on the whole. For exam-

ple, VMM transfers the output of a virtualized network card to

that of a physical network card. Virtualization is classified as full

virtualization and para-virtualization. The full virtualization allows

an unmodified guest OS to run in a VM just as in a physical ma-

chine. This approach enables various OSes to be deployed in the

virtualized environment, but often incurs a serious performance

penalty. In contrast, the para-virtualization requires modifications

to the guest OSes cooperating with the VMM, but gains a near-

native performance.

Xen is a widely used para-virtualization software, which opti-

mizes the VM performance. Fig. 1 depicts the Xen virtualization

architecture in which VMM abstracts the underlying physical re-

sources and provides the management interfaces of VMs. VMM

manages the physical resources of all VMs called domains, and

launches the most privileged domain called Dom0, which is re-

sponsible for creating, migrating, and destroying the other unpriv-

ileged domains called DomU. VMM copies the input and output of

DomU to Dom0, and then sent them to the hardware driver in-

stalled in Dom0.

2.2. Memory checkpoint

VMM, which manages the memory of a physical machine, in-

tercepts and checks the memory operations of VMs. VMM ensures

that every VM accesses the memory in its own memory space. Be-

cause all memory operations go through VMM, we can take the

Please cite this article as: T. Wang et al., ReSeer: Efficient search-based replay for multiprocessor virtual machines, The Journal of Systems

and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.032

http://dx.doi.org/10.1016/j.jss.2016.07.032

Download English Version:

https://daneshyari.com/en/article/4956538

Download Persian Version:

https://daneshyari.com/article/4956538

Daneshyari.com

https://daneshyari.com/en/article/4956538
https://daneshyari.com/article/4956538
https://daneshyari.com

