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a  b  s  t  r  a  c  t

In  this  paper,  we  deal  with  the  problem  of  classification  of  interval  type-2  fuzzy  sets through  evaluating
their  distinguishability.  To  this  end,  we  exploit  a  general  matching  algorithm  to  compute  their  similarity
measure.  The  algorithm  is  based  on the  aggregation  of two  core  similarity  measures  applied  indepen-
dently  on  the upper  and  lower  membership  functions  of  the  given  pair  of  interval  type-2  fuzzy  sets  that
are  to  be  compared.  Based  on  the  proposed  matching  procedure,  we  develop  an  experimental  methodol-
ogy  for  evaluating  the  distinguishability  of collections  of  interval  type-2  fuzzy  sets.  Experimental  results
on evaluating  the proposed  methodology  are  carried  out  in the  context  of  classification  by  considering
interval  type-2  fuzzy  sets  as  patterns  of  suitable  classification  problem  instances.  We  show  that  consid-
ering  only  the  upper  and  lower  membership  functions  of  interval  type-2  fuzzy  sets  is  sufficient  to (i)
accurately  discriminate  between  them  and  (ii)  judge  and quantify  their  distinguishability.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Research in data-driven inductive modeling systems resulted
in the development of numerous classifiers that can automati-
cally handle patterns defined as points in I = R

n [52]. The main
objective of classification problems is to accurately classify some
labeled patterns of a given test set, based on some a priori knowl-
edge of their (unknown) underlying data generating process that
is available in the form of a training dataset. The classification
model of a dataset is synthesized through a suitable learning (i.e.,
optimization) algorithm, guided by a proper objective function.
There are many interesting practical pattern recognition prob-
lems that are intuitively defined on structured or unconventional
patterns. Examples of such patterns are segmented images [3],
audio/video signals [34], and metabolic networks [53]. In the lit-
erature, there are different formal representations to model such
patterns; for instance labeled graphs, sequences of objects, and
fuzzy sets [33,3,8,46,7,24,37,21,22,19,36,23,2]. When dealing with
structured or unconventional data, usually the input space I is not
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directly interpretable as a common metric (or measure) space. Con-
sequently, well-known classification systems, such as neuro-fuzzy
networks and (adaptive) fuzzy inference systems [35,25,27,26,16],
cannot be directly applied since they usually rely on Euclidean geo-
metric properties of the input space I (such as angles and distances).

Recently, to address these issues, two  mainstream approaches
are widely used, the kernel [38] and the dissimilarity [33] based tech-
niques. With the kernel-based approach, an appropriate positive
semi-definite (PD) kernel function k : I × I → R  is used to mea-
sure the similarity of the input data. Since PD kernels are Mercer’s
functions, the well-known Mercer’s theorem applies, enabling the
possibility of relying on the so-called kernel trick [38]. With the
dissimilarity-based approach, a dissimilarity measure d : I × I →
R

+ is used to construct the dissimilarity matrix,  whereby a new
prototype-based formal representation space of the input data is
derived. It is worth mentioning that both d(·, ·) and k(·, ·), which
are generally termed as matching algorithms,  are intimately related,
playing a fundamental role when dealing with structured or uncon-
ventional patterns [21,33].

In this paper, we investigate the problem of classifying interval
type-2 fuzzy sets (IT2FSs) by means of a general and light-weighted
matching algorithm; the algorithm computes the similarity value
between IT2FSs that, however, can be easily converted into a dis-
similarity. Since the interpretation of an IT2FS as a pattern is not
well-established in the technical literature, we refer to IT2FSs as
unconventional patterns. The contribution of the paper is twofold.
First, we  show that, using different configurations of the proposed
matching algorithm, enables the design of accurate and robust
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classifiers for IT2FSs. Second, and most importantly, we show that
the classification results obtained in this setting can be used to
evaluate the distinguishability property of IT2FSs. Intuitively, two
fuzzy sets are distinguishable if their support on the input domain
is diversely distributed. Mencar and Fanelli [28] have provided dif-
ferent definitions of distinguishability in the type-1 fuzzy set (T1FS)
case, which include also a dissimilarity-based approach: “two
diversely distributed T1FSs will have a higher dissimilarity value in
comparison with the two T1FSs having an analogous distribution
in terms of support”. We  elaborate on the same dissimilarity-based
interpretation to characterize distinguishable IT2FSs, relying on the
achieved test set classification accuracy as a quantitative and formal
indicator of distinguishability; the higher the test set classification
accuracy results, the better the distinguishability of the analyzed
IT2FSs. This fact enables judging over the outcomes of different pro-
cedures that are applied on the same data for generating a collection
of IT2FSs. To date, few methods have been proposed for model-
ing words (concepts expressed in natural language) with IT2FSs
[18,7,44,46], but judging over their outcome is subjective – to com-
pare generated IT2FSs, the authors have mainly used the term “look
more reasonable”. In this paper, we quantitatively and objectively
compare the IT2FSs generated by the four methods described in
references [18,7,44,46].

The remainder of the paper is organized as follows. After a brief
introduction to IT2FSs in Section 2, in Section 3 we  introduce the
context of similarity (and dissimilarity) measures, reviewing the
state-of-the-art similarity measures for IT2FSs. Section 4 describes
the proposed matching algorithm for IT2FSs, which is used as the
core component in the classification. In Section 5, the performed
experimental evaluations are discussed. Finally Section 6 concludes
the paper, giving directions for future research.

2. Review of interval type-2 fuzzy sets

Type-2 fuzzy set (T2FS) is proposed as an extension to the type-1
fuzzy set [56]. T2FS enables handling additional levels of uncertainty
by introducing the fuzzy membership function, which characterizes
the membership value of an element as a T1FS [29,47]. Despite var-
ious efforts on making the cost of using T2FSs affordable, e.g., see
[47,41,48,50,12,14,11], to compensate the computational complex-
ities of T2FSs some variations are proposed; notably interval T2FS
(IT2FS) [30] and shadowed fuzzy set (SFS) [43,45].

In IT2FS, the membership grade of an element is an interval that
enables modeling the first degree of uncertainty. However, due to
the uniform distribution sitting on top of the intervals, in an IT2FS
there is no way to discriminate different choices of membership
degrees. SFSs [43,45], however, provide a framework with more
freedom degrees for handling uncertainties than IT2FSs with lower
computational complexity comparing to general T2FSs. SFSs are
generated through redistribution of the fuzziness associated with
fuzzy grades of T2FSs in shadowed sets [51]. In this paper, however,
we elaborate on IT2FSs.

An IT2FS Ã  defined on the universe of discourse X  is formally
represented as

Ã = {(x, �Ã(x)) | x ∈ X, �Ã(x) = {(u, 1) | �Ã(x) ≤ u ≤ �̄Ã(x),

[�Ã(x), �̄Ã(x)] ⊆ U = [0,  1]}}. (1)

In (1), x is called primary variable, and [�Ã(x), �̄Ã(x)] denotes

the interval valued membership grade of x in Ã.  X, as well as U,  can
be a continuous or a finite set, defining in turn continuous or finite
interval type-2 fuzzy sets.

An IT2FS is fully characterized by its so-called Footprint of
Uncertainty (FOU), defined as:

FOUÃ =
⋃

x∈X
(x, [�Ã(x), �̄Ã(x)]). (2)

Throughout the paper we  use IT2FS and FOU interchangeably.
FOU, as can be observed from Eq. (2), is a bounded region depict-
ing the uncertainties associated with the membership grades of Ã.
FOU is completely identified by two T1FSs, namely upper member-
ship function (UMF) and lower membership function (LMF), that are
defined as:

UMFÃ = ¯FOUÃ = {(x, �̄Ã(x)) |x ∈ X}, (3)

LMFÃ = FOUÃ = {(x, �Ã(x)) |x ∈ X}. (4)

More detailed discussions on the T2FSs theory, their
operations, and related applications can be found in
[30,47,41,48,50,49,42,13,10,15,58,39,6,5].

3. Similarity and dissimilarity measures

A dissimilarity measure on I is a bounded symmetric function
d : I × I → R, such that ∃d0 ∈ R, −∞ < d0 ≤ d(x, y) < ∞,  ∀x, y ∈ I
(where usually d0 = 0), and d(x, x) = d0, ∀x ∈ I.  If in addition d(·, ·)
satisfies the triangular inequality and d(x, y) = d0 ↔ x = y, then it is
called a metric dissimilarity measure (metric in short). Analogously,
we can define the concept of similarity measure, since in fact the
two concepts are intimately related [3,33]. When d(·, ·) assumes
values within the unit interval [0, 1], we  refer to it as a normal dis-
similarity measure. The same argument is true for the similarity
measure s(·, ·). Although formal requisites of (dis)similarity algo-
rithms are important during the analysis of the problem at hand, the
design of effective-in-practice (dis)similarity measures for pattern
recognition applications remains mostly an engineering, strongly
problem-dependent, challenge [33,21,24,37,3]. Pattern recognition
and data mining problems usually deal with complex data types,
which points out the necessity of defining ad hoc (dis)similarity
measures satisfying fewer constraints.

3.1. Brief review of similarity measures for IT2FSs

Let F̃(X) denotes the set of all IT2FSs on X. A similarity measure
on F̃(X) is a bounded function s : F̃(X)  × F̃(X) → R

+, which satisfies
the following four axioms [4,54,57,55]:

1 (symmetry) ∀Ã, B̃ ∈ F̃(X), s(Ã, B̃) = s(B̃, Ã);
2 (vanishing) s(D, Dc) = 0, where D  is a crisp set and Dc is its com-

plement;
3 (maximization) ∀Ẽ ∈ F̃(X),  s(Ẽ, Ẽ) = max

Ã,B̃∈F̃(X)
s(Ã, B̃);

4 (monotonicity) ∀Ã, B̃, C̃ ∈ F̃(X), if Ã ⊆ B̃ ⊆ C̃,  then s(Ã, B̃) ≥
s(Ã, C̃) and s(B̃, C̃)  ≥ s(Ã, C̃).

Wu and Mendel in [54] have proposed a similarity measure for
IT2FSs, called vector similarity measure, which reads as:

sv(Ã, B̃) = [s1(Ã, B̃), s2(Ã, B̃)]T
, (5)

where s1(Ã, B̃) measures the similarity between the shapes of the
IT2FSs Ã  and B̃.  s2(Ã, B̃), however, calculates the proximity of Ã  and
B̃. Both s1(·, ·) and s2(·, ·) are based on the analysis of the centroid
of the two  input IT2FSs. The final scalar similarity value is then
obtained by multiplying the outcomes of s1(·, ·) and s2(·, ·).
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