
The Journal of Systems and Software 122 (2016) 52–62

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Casper: Automatic tracking of null dereferences to inception with

causality traces

Benoit Cornu

a , Earl T. Barr b , Lionel Seinturier a , Martin Monperrus a , ∗

a Centre de Recherche en Informatique Signal et Automatique de Lille Université de Lille 1 59655 Villeneuve d’Ascq Cedex France
b Department of Computer Science, University College London, Gower Street London, WC1E 6BT, UK

a r t i c l e i n f o

Article history:

Received 11 January 2016

Revised 16 August 2016

Accepted 17 August 2016

Available online 18 August 2016

Keywords:

Debugging

Null pointer

Causality analysis

a b s t r a c t

Fixing a software error requires understanding its root cause. In this paper, we introduce “causality

traces”, crafted execution traces augmented with the information needed to reconstruct the causal chain

from the root cause of a bug to an execution error. We propose an approach and a tool, called Casper ,

based on code transformation, which dynamically constructs causality traces for null dereference errors.

The core idea of Casper is to replace null s with special objects, called “ghosts”, that track the propaga-

tion of the nulls from inception to their error-triggering dereference. Causality traces are extracted from

these ghosts. We evaluate our contribution by providing and assessing the causality traces of 14 real null

dereference bugs collected over six large, popular open-source projects.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Null pointer dereferences are frequent errors that cause seg-

mentation faults or uncaught exceptions. Li et al. found that 37.2%

of all memory errors in Mozilla and Apache are null derefer-

ences (Li et al., 2006). Kimura et al. (2014) found that there are

between one and four null checks per 100 lines of code on aver-

age. Problematic null dereferences are daily reported in bug repos-

itories, such as bug MATH#305. 1 A null dereference occurs at run-

time when a program tries to read memory using a field, parame-

ter, or variable that points to “null ”, i.e. nothing. The terminology

changes depending on the language, in this paper, we concentrate

on the Java programming language, where a null dereference trig-

gers an exception called NullPointerException, often called “NPE”.

Just like any bug, fixing null dereferences requires understand-

ing their root cause, a process that we call null causality analysis .

At its core, this analysis is the process of connecting a null deref-

erence, where the fault is activated and whose symptom is a null

pointer exception, to its root cause, usually the initial assignment

of a null value, by means of a causality trace — the execution path

the null took through the code from its inception to its derefer-

ence.

The literature offers different families of techniques to compute

the root cause of bugs, mainly program slicing, dataflow analysis,

∗ Corresponding author.

E-mail address: martin.monperrus@univ-lille1.fr (M. Monperrus).
1 https://issues.apache.org/jira/browse/MATH-305 .

or spectrum-based fault-localization. However, they have been lit-

tle studied and evaluated in the context of identifying the root

cause of null dereferences (Hovemeyer and Pugh, 2004; Bond et al.,

2007; Wang et al., 2013). Those techniques are limited in appli-

cability (Hovemeyer and Pugh (2004) is an intra-procedural tech-

nique) or in accuracy (program slicing results in large sets of in-

structions (Binkley and Harman, 2004)). The fundamental problem

not addressed in the literature is that the causality trace from null

inception to the null symptom is missing. This is the problem that

we address in this paper. We propose a causality analysis tech-

nique that uncovers the inception of null variable bindings that

lead to errors along with the causal explanation of how null flowed

from inception to failure during the execution. While our analysis

may not report the root cause, it identifies the null inception point

with certainty, further localizing the root cause and speeding de-

bugging in practice.

Let us consider a concrete example. Listing 1 shows a null

dereference stack trace which shows that the null pointer excep-

tion happens at line 88 of BisectionSolver. Let’s assume that a per-

fect fault localization tool suggests that this fault is located at line

55 of UnivariateRealSolverImpl (which is where the actual fault

lies). However, the developer is left clueless with respect to the

relation between line 55 of UnivariateRealSolverImpl and line 88

of BisectionSolver where the null dereference happens.

What we propose is a causality trace , as shown in Listing 2 . In

comparison to Listing 1 , it contains three additional pieces of in-

formation. First, it gives the exact name, here f, and kind, here

parameter (local variable or field are other possibilities), of the

http://dx.doi.org/10.1016/j.jss.2016.08.062

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.08.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.08.062&domain=pdf
mailto:martin.monperrus@univ-lille1.fr
https://issues.apache.org/jira/browse/MATH-305
http://dx.doi.org/10.1016/j.jss.2016.08.062

B. Cornu et al. / The Journal of Systems and Software 122 (2016) 52–62 53

Listing 1. The standard stack trace of a real null dereference bug in Apache Com-

mons Math.

Listing 2. What we propose: a causality trace, an extended stack trace that contains

the root cause.

variable that holds null. 2 Second, it explains the inception of the

null binding to the parameter, the call to solve at line 66 with

field f2 passed as parameter. Third, it gives the root cause of

the null dereference: the assignment of null to the field f2 at

line 55 of class UnivariateRealSolverImpl. Our causality traces con-

tain several kinds of causal links, of which Listing 2 shows only

three: the name of the wrongly dereferenced variable, the flow of

a null binding through parameter bindings, and null assignment.

Section 2.2 presents the concept of null causality trace.

We present Casper , a tool that transforms Java programs to cap-

ture causality traces and facilitate the fixing of null deferences. 3

Casper takes as input the program under debug and a main rou-

tine that triggers the null dereference. It first instruments the

program under debug by replacing null with “ghosts” that are

shadow instances responsible for tracking causal information dur-

ing execution. To instrument a program, Casper applies a set of

11 source code transformations tailored for building causal connec-

tions. For instance, x = y is transformed into o = assign(y), where

method assign stores an assignment causal links in a null ghost

(Section 2.3). Section 2.4 details these transformations.

Compared to the related work, Casper is novel along three di-

mensions. First, it collects the complete causality trace from the

inception of a null binding to its dereference. Second, it identi-

fies the inception of a null binding with certainty . Third, Casper is

lightweight and easily deployable, resting on transformation rather

than replacing the Java virtual machine, a la Bond et al. (2007) .

The first two properties strongly differentiate Casper from the re-

lated work (Sinha et al., 2009; Bond et al., 2007), which tentatively

labels root causes with suspiciousness values and does not collect

causality traces nor identifies null inception points with certainty.

We evaluate our contribution Casper by providing and assessing

the causality traces of 14 real null dereference bugs collected over

six large, popular open-source projects. We collected these bugs

from these project’s bug reports, retaining those we were able to

reproduce. Casper constructs the complete causality trace for 13

of these 14 bugs. For 11 out of these 13 bugs, the causality trace

contains the location of the actual fix made by the developer.

2 if the dereference is the result of a method invocation, we give the code ex-

pression that evaluates to null.
3 We have named our tool Casper , since it injects “friendly” ghosts into buggy

programs.

To sum up, our contributions are:

• The definition of causality traces for null dereference errors

from null inception to its dereference and the concept of

“ghost” classes, which replace null , collect causality traces,

while being otherwise indistinguishable from null .
• A set of code transformations that inject null ghosts and collect

causality traces of null dereferences.
• Casper , an Java implementation of our technique.
• An evaluation of our technique on 14 real null dereference bugs

collected over 6 large open-source projects.

The remainder of this paper is structured as follows.

Section 2 presents our technical contribution. Section 3 gives the

results of our empirical evaluation. Section 4 discusses the limi-

tations of our approach. Sections 5 and 6 respectively discusses

the related work and concludes. Casper and our benchmark can

be downloaded from https://github.com/Spirals-Team/casper .

2. Debugging nulls with CASPER

Casper tracks the propagation of a null binding during appli-

cation execution in a causality trace. A null dereference causality

trace is a sequence of program elements (AST nodes) traversed dur-

ing execution from the source of the null to its erroneous deref-

erence.

2.1. Overview

We replace null s with objects whose behavior, from the ap-

plication’s point of view, is same as null , except that they store a

causality trace, defined in Section 2.2 . We call these objects null

ghosts and detail them in Section 2.3 . Casper rewrites the pro-

gram under debug to use null ghosts and to store a null ’s causal-

ity trace in those null ghosts, (see Section 2.4). We instantiated

Casper ’s concepts in Java and therefore tailored our presentation

in this section to Java (Section 2.5).

Casper makes minimal assumptions on the application under

debug, in particular, it does not assume a closed world where all

libraries are known and manipulable. Hence, a number of tech-

niques used in Casper comes from this complication.

2.2. Null dereference causality trace

To debug a complex null dereference, the developer has to un-

derstand the history of a null binding from its inception to its

problematic dereference. When a variable is set to null , we say

that a null binding is created. When clear from context, we drop

“binding” and say only that a null is created. This is a conceptual

view that abstracts over the programming language and the imple-

mentation of the virtual machine. In Java, there is a single null
value to which variables are bound without creating a new null
values.

To debug a null dereference, the developer has to know the de-

tails of the null ’s propagation, i.e. why and when each variable

became null at a particular location. We call this history the “null

causality trace” of the null dereference. Developers read and write

source code. Thus, source code is the natural medium in which

developers reason about programs for debugging. In particular, a

null propagates through assignments and method return values.

This is why Casper defines causal links in a null causality trace in

terms of traversed program elements and their actual location in

code, defined as follows and presented in Table 1 .

Definition 2.1. A null dereference causality trace is the temporal

sequence of program elements (AST nodes) traversed by a derefer-

enced null .

https://github.com/Spirals-Team/casper

Download English Version:

https://daneshyari.com/en/article/4956548

Download Persian Version:

https://daneshyari.com/article/4956548

Daneshyari.com

https://daneshyari.com/en/article/4956548
https://daneshyari.com/article/4956548
https://daneshyari.com

