
The Journal of Systems and Software 122 (2016) 144–154 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Fault localization using disparities of dynamic invariants 

Xiaoyan Wang 

a , b , c , Yongmei Liu 

b , ∗

a State Key Laboratory of Software Development Environment, Beihang University, Beijing, China 
b Department of Computer Science, Sun Yat-sen University, Guangzhou, China 
c Department of Information Management and Information System, Nanjing Audit University, Nanjing, China 

a r t i c l e i n f o 

Article history: 

Received 19 April 2015 

Revised 8 September 2016 

Accepted 12 September 2016 

Available online 13 September 2016 

Keywords: 

Software debugging 

Fault localization 

Dynamic invariant 

Program analysis 

a b s t r a c t 

Violations of dynamic invariants may offer useful clues for identifying faults in programs. Although tech- 

niques that use violations of dynamic invariants to detect anomalies have been developed, some of them 

are restrained by the high computational cost of invariant detecting, false positive filtering, and redun- 

dancy removing, and others can only discover a few specific types of faults under a complete monitoring 

environment. This paper presents a novel fault localization approach using disparities of dynamic invari- 

ants, named FDDI. To make more efficient use of invariant detecting tools, FDDI first selects highly suspect 

functions via spectrum-based fault localization techniques, and then applies invariant detecting tools to 

these functions one by one. For each suspect function, FDDI uses variables that are involved in dynamic 

invariants that do not simultaneously hold in a set of passed and a set of failed tests to do further analy- 

sis, which reduces the time cost in filtering false positives and redundant invariants. Finally, FDDI locates 

statements that are data-related to these variables. The experimental results show that FDDI is able to 

locate 75% of 360 common faults in utility programs when examining up to 10% of the executed code, 

while Naish2, Ochiai and Jaccard all locate around 53%. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Dynamic invariants are relations among variables that are ob- 

served to hold at certain locations in some runs of a program 

( Nguyen et al., 2012 ). They can be inserted as assertion statements 

to detect abnormal behaviors of programs, collected to generate 

likely documentation and formal specifications, and used in pro- 

gram understanding ( Zeller, 2009 ), etc. In particular, the violation 

of dynamic invariants can offer useful clues for fault localization 

and give better explanation for the localization result. However, 

current applications of dynamic invariants in automated program 

debugging are not efficient due to the high computational cost 

of detecting dynamic invariants. For Daikon ( Ernst et al., 2001 ), it 

maintains an invariant pattern library that limits the detection of 

invariants with rich expressive power. GenInv ( Nguyen et al., 2012 ) 

combines mathematical techniques to bring new capabilities to 

find more expressive dynamic invariants while increasing the com- 

plexity of the detection. For Diduce ( Hangal and Lam, 2002 ) and 

ClearView ( Perkins et al., 2009 ), they can only detect and patch 

specific types of errors due to the monitoring mechanisms they re- 

quire. Currently, the work of Sahoo et al. (2013) combines dynamic 

∗ Corresponding author. 

E-mail addresses: wangxy25@mail2.sysu.edu.cn , xywang@nau.edu.cn (X. Wang), 

ymliu@mail.sysu.edu.cn (Y. Liu). 

program invariants with more sophisticated filtering techniques to 

identify a set of dynamic invariants that hold in selected passed 

runs but do not hold in failing tests, and returns the locations of 

the dynamic invariants as the localization results. 

In this paper, we present a novel automated fault localization 

approach via using disparities of dynamic invariants, named FDDI , 

to locate the root causes of faulty programs via disparities of two 

sets of dynamic invariants generated from passing and failing test 

cases respectively. The intuition behind the idea is that a variable 

is likely to be related to the root cause if it is involved in relations 

that do not simultaneously hold in a certain number of failed runs 

and passed runs. In FDDI, spectrum-based fault localization (SBFL) 

techniques are first applied in function level to find suspect func- 

tions. Dynamic invariants are then yielded in these functions one 

by one. After detecting dynamic invariants, how does FDDI further 

locate the source code lines with bugs? In the following segment, 

we demonstrate how to use disparities of dynamic invariants to lo- 

cate faults by using a snippet that contains a bug at line 5 where 

“if(d < 6)” should actually be “if(d < 5)”, as shown in Fig. 1 . Con- 

sider the function f() in Fig. 1 and suppose we have only one 

invariant schema: i < j, where i and j are metavariables. At the 

entry of f() , instantiating this schema produces 12 concrete po- 

tential invariants: 

a<b, a<c, a<d, b<a, b<c, b<d, c<a, c<b, c<d, d<a, d<b, d<c.

http://dx.doi.org/10.1016/j.jss.2016.09.014 

0164-1212/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.jss.2016.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.09.014&domain=pdf
mailto:wangxy25@mail2.sysu.edu.cn
mailto:xywang@nau.edu.cn
mailto:ymliu@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.jss.2016.09.014


X. Wang, Y. Liu / The Journal of Systems and Software 122 (2016) 144–154 145 

Fig. 1. Motivational example. 

The upper right portion of Fig. 1 shows the set of invariants 

that have not been falsified by any of the preceding passed tests. 

Therefore, the last potential invariant “b < d” survived all three 

passed executions of function f() . Similarly, as shown in the bot- 

tom right portion of Fig. 1 , the last potential invariant “b < d” and 

“c < d” survived all three failed executions of f() . As we can see, 

two likely invariant sets {b < d} and {b < d, c < d} are yielded via 

respectively running a passed test suite and a failed test suite, and 

the disparity between these two sets is {c < d}. FDDI extracts vari- 

able “c” and “d” from the disparity and can locate suspect state- 

ments line 2 and line 5 via using these variables. As a result, line 

5 that is exactly the root cause is captured by our method. 

FDDI is neither for certain error types nor under any monitor- 

ing environment. To be effective, it consists of two stages in its 

application. In the first stage, the block hit spectrum based tech- 

nique is applied to rank functions by their suspiciousness, and n 

most suspicious functions will be selected for further analysis. By 

doing this, our method can concentrate on a small portion of the 

program at a time. Also, this overcomes the problem that a large 

number of variables in a program will bring existing invariant de- 

tecting techniques to their knees. In the second stage, for each sus- 

picious function, two sets of dynamic invariants are first yielded 

by running a passed and a failed test case suite respectively. The 

statement-based reduction strategy ( Yu et al., 2008 ) is applied to 

generate the passed and the failed test case suite. Variables in the 

difference of the two sets are then used to find data-related state- 

ments in the function by static analysis, which reduces the compu- 

tational cost of filtering redundant and spurious invariants. These 

statements will be returned to developers in the order of the sus- 

piciousness of the functions where they appear and in the order in 

which they appear in the same function. 

The main contributions of this paper include: (1) We propose 

to use variables in the disparity of two dynamic invariant sets re- 

spectively generated from a failed and a passed test suite to locate 

bugs in a faulty program. (2) To reduce the high computational 

cost of current invariant detecting methods, FDDI employs existing 

dynamic invariant detecting tool, like Daikon, to generate dynamic 

invariants in the scope of one highly suspect function each time, 

and block hit spectrum based techniques are applied to rank these 

functions of a faulty program. (3) The experimental result shows 

that FDDI locates 75% of 360 common faults in 6 real-life utility 

programs when examining up to 10% of the executed code, while 

Naish2, Ochiai and Jaccard all locate around 53%. 

The reminder of this paper is organized as follows: Section 2 in- 

vestigates the proposed approach in detail. Section 3 evalu- 

ates the proposed approach and presents the experiment results. 

Section 4 presents the related work. Section 5 concludes this pa- 

per and highlights some future work. 

2. FDDI 

In this section, we first illustrate the top-level view of FDDI and 

present primary parts of FDDI. We then describe and analyze the 

algorithm of FDDI. 

2.1. Top level view of FDDI 

Fig. 2 depicts the overview of FDDI. The inputs of FDDI include 

a faulty program app , a test case suite TS and the component gran- 

ularity FL . The output is a debugging report R . As we can see from 

Fig. 2 , FDDI has eight primary components. 

• call DCC : call DCC to calculate the suspiciousness of each exe- 

cuted function in app . DCC ( Perez et al., 2014 ) is a dynamic cov- 

erage based multiple granularity fault localization technique. To 

employ DCC to rank functions, we need to set both the initial 

granularity and finial granularity to be the function level. As a 

result, a function sequence � F is generated from this part. 
• select function : select a function f from 

�
 F in decreasing order of 

suspiciousness. FDDI will give deeper analysis of f via its dy- 

namic invariants. FDDI proceeds to “generate report” part, if all 

functions with expected suspiciousness are selected out from 

�
 F . 

• refine tests : find test cases that invoke f and remove redundant 

tests that cover the same code of f . FDDI distinguishes a test 

suite RTS that all test cases in it execute the code in f from 

the original test suite TS , because not all the tests in TS invoke 

the highly suspect function f . To save running time, FDDI re- 

moves redundant test cases that cover the same code of f , be- 

cause these tests may not refine the generated dynamic invari- 

ant set of f . Besides, FDDI identifies a passed test suite RTS p and 

a failed test suite RTS f in RTS . 
• analyze call site : analyze call sites in function f , and find the 

locations CS of loop and return statements and variable set V 

for each block in f . Instrumenting new call sites in f is required 

to obtain more dynamic invariants, because Daikon is applied in 

FDDI and it only generates dynamic invariants in the entrance 

and exit sites of a function by default. 
• instrument f : instrument a dummy procedure for each executed 

loop in f , and one call site of the dummy procedure is instru- 

mented in the loop head and another call site is added in the 

loop tail. Parameters of the dummy procedure are variables that 

hold in the loop. For each return statement, a dummy proce- 

dure is constructed and its call site is before the return state- 

ment. Detailed description can be seen in Section 2.2 . 
• detect dynamic invariant : detect two dynamic invariant sets S 

and S 
′ 
for function f through respectively running the passed 

test suite RTS p and the failed test suite RTS f in Daikon. 
• analyze disparity : find different dynamic invariants between S 

and S 
′ 
, and extract variables involved in these dynamic invari- 

ants. If any, FDDI finds suspect statements in f that are data 

dependent with these variables. Otherwise, FDDI collects all ex- 

ecuted statements in f in a random selected failed test of app . 

FDDI returns back to “select function” part for the next suspect 

function. 
• generate report : generate a debugging report of app . It con- 

sists of suspect statements in each selected function and cor- 

responding variables in disparities. All suspect statements are 

returned in the report not only in decreasing order of suspi- 

ciousness of their functions but also in increasing order of ap- 

pearance in their functions. Moreover, these variables with dis- 

parities could assist users in understanding the bug when they 

observe localization results in each function. 



Download	English	Version:

https://daneshyari.com/en/article/4956554

Download	Persian	Version:

https://daneshyari.com/article/4956554

Daneshyari.com

https://daneshyari.com/en/article/4956554
https://daneshyari.com/article/4956554
https://daneshyari.com/

