
The Journal of Systems and Software 122 (2016) 311–326

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Method-level program dependence abstraction and its application to

impact analysis

Haipeng Cai a , ∗, Raul Santelices b

a School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99163
b Delphix, Atlanta, GA, 30022

a r t i c l e i n f o

Article history:

Received 14 September 2015

Revised 22 June 2016

Accepted 27 September 2016

Available online 28 September 2016

Keywords:

Dependence analysis

Dependence abstraction

Method dependence graph (MDG)

Impact analysis

Accuracy

Cost-effectiveness

a b s t r a c t

The traditional software dependence (TSD) model based on the system dependence graph enables precise

fine-grained program dependence analysis that supports a range of software analysis and testing tasks.

However, this model often faces scalability challenges that hinder its applications as it can be unneces-

sarily expensive, especially for client analyses where coarser results suffice.

This paper revisits the static-execute-after (SEA), the most recent TSD abstraction approach, for its

accuracy in approximating method-level forward dependencies relative to the TSD model. It also presents

an alternative approach called the method dependence graph (MDG), compares its accuracy against the

SEA, and explores applications of the dependence abstraction in the context of dependence-based impact

analysis.

Unlike the SEA approach which roughly approximates dependencies via method-level control flows

only, the MDG incorporates more fine-grained analyses of control and data dependencies to avoid being

overly conservative. Meanwhile, the MDG avoids being overly expensive by ignoring context sensitivity in

transitive interprocedural dependence computation and flow sensitivity in computing data dependencies

induced by heap objects.

Our empirical studies revealed that (1) the MDG can approximate the TSD model safely, for method-

level forward dependence at least, at much lower cost yet with low loss of precision, (2) for the same

purpose, while both are safe and more efficient than the TSD model, the MDG can achieve higher pre-

cision than the SEA with better efficiency, both significantly, and (3) as example applications, the MDG

can greatly enhance the cost-effectiveness of both static and dynamic impact analysis techniques that are

based on program dependence analysis.

More generally, as a program dependence representation, the MDG provides a viable solution to many

challenges that can be reduced to balancing cost and effectiveness faced by dependence-based tasks other

than impact analysis.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Program dependence analysis has long been underlying a wide

range of software analysis and testing techniques (e.g., Podgurski

and Clarke, 1990; Bates and Horwitz, 1993; Santelices and Harrold,

2010; Baah et al., 2010). While traditional approaches to depen-

dence analysis offer fine-grained results (at statement or even in-

struction level) (Ferrante et al., 1987; Horwitz et al., 1990), they

can face severe scalability and/or usability challenges, especially

with modern software of growing sizes and/or increasing complex-

ity (Jász et al., 2008; Acharya and Robinson, 2011a), even more so

∗ Corresponding author.

E-mail addresses: hcai@eecs.wsu.edu (H. Cai), rasantel@gmail.com (R. Santelices).

when high precision is demanded with safety guarantee (Jackson

and Rinard, 20 0 0; Binkley, 2007).

On the other hand, for many software-engineering tasks where

results of coarser granularity suffice, computing the finest-grained

dependencies tends to be superfluous and ends up with low cost-

effectiveness in particular application contexts—in this work, a (de-

pendence) analysis is considered cost-effective (measured by the

ratio of effectiveness to cost) if it produces effective (measured by

accuracy, or precision alone if with constantly perfect recall) re-

sults relative to the total overhead it incurs (including analysis cost

and human cost inspecting the analysis results) (Cai et al., 2016).

One example is impact analysis (Bohner and Arnold, 1996), which

analyzes the effects of specific program components, or changes to

them, on the rest of the program to support software evolution and

http://dx.doi.org/10.1016/j.jss.2016.09.048

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.09.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.09.048&domain=pdf
mailto:hcai@eecs.wsu.edu
mailto:rasantel@gmail.com
http://dx.doi.org/10.1016/j.jss.2016.09.048

312 H. Cai, R. Santelices / The Journal of Systems and Software 122 (2016) 311–326

many other client analyses, including regression testing (Jász et al.,

2012; Schrettner et al., 2014) and fault localization (Ren et al.,

2006). For such tasks as impact analysis, results are commonly

given at method level (Law and Rothermel, 2003; Apiwattanapong

et al., 2005; Jász, 2010), where fine (e.g., statement-level) results

can be too large to fully utilize (Acharya and Robinson, 2011a). In

other contexts such as program understanding, method-level re-

sults are also more practical to explore than those of the finest

granularity.

Driven by varying needs, different approaches have been ex-

plored to abstract program dependencies to coarser levels, includ-

ing the program summary graph (Callahan, 1988) used to speed up

interprocedural data-flow analysis, the object-oriented class-member

dependence graph (Sun et al., 2010), the lattice of class and method

dependence (Sun et al., 2011), the influence graph (Breech et al.,

2006), that are all used for impact analysis, and the module de-

pendence graph (Mancoridis et al., 1999) used for understanding

and improving software structure. While these abstractions have

been shown useful for their particular client analyses, they ei-

ther capture only partial dependencies among methods (Breech

et al., 2006; Sun et al., 2010) or dependencies at levels of classes

(Sun et al., 2011) even files (Mancoridis et al., 1999), which can

be overly coarse for many dependence-based tasks. More critically,

most such approaches were not designed or fully evaluated as a

general program dependence abstraction with respect to their ac-

curacy (both precision and recall) against that of the original full

model they approximate as ground truth.

Initially intended to replace traditional software dependencies

(TSD) that are based on the system dependence graph (SDG)

(Horwitz et al., 1990; Jász et al., 2008), a method-level depen-

dence abstraction, called the static-execute-after/before (SEA/SEB)

(Jász et al., 2008), has been proposed recently. It abstracts depen-

dencies among methods based on the interprocedural control flow

graph (ICFG) and was reported to have little loss of precision with

no loss of (100%) recall relative to static slicing based on the TSD

model (i.e., the SDG). Later, the SEA was applied to static impact

analysis shown more accurate than peer techniques (Tóth et al.,

2010) and capable of improving regression test selection and pri-

oritization (Schrettner et al., 2014).

However, previous studies on the accuracy of SEA/SEB either

exclusively targeted procedural programs (Jász et al., 2008), or fo-

cused on backward dependencies based on the SEB (against back-

ward slicing on top of the SDG) only (Jász, 2010). The remaining

relevant studies addressed the accuracy of SEA-based forward de-

pendencies, with some indeed using object-oriented programs and

compared to forward slicing on the TSD model, yet the accuracy

of such dependencies was assessed either not at the method level,

but at class level only (Beszédes et al., 2007), or not relative to

ground truth based on the TSD model, but those based on reposi-

tory changes (Jász et al., 2012; Schrettner et al., 2014) or program-

mer opinions (Tóth et al., 2010), and only in the specific applica-

tion context of impact analysis.

While forward dependence analysis is required by many

dependence-based applications, including static impact analysis

that the SEA/SEB has been mainly applied to, the accuracy of this

abstraction with respect to the TSD model, for forward dependen-

cies and object-oriented programs in particular, remains unknown.

In addition, it has not yet been explored whether and, if possi-

ble, how such program dependence abstractions would improve

dynamic analysis, especially hybrid ones that utilize both static de-

pendence and execution data of programs, such as hybrid dynamic

impact analysis (Maia et al., 2010; Cai and Santelices, 2014, 2015b).

In this paper, we present and study an alternative method-level

dependence abstraction using a program representation called the

method dependence graph (MDG). In comparison to the SDG-based

TSD models which represent a program in terms of the data and

control dependencies among all of its statements, an MDG serves

also as a general graphical program representation, but models

those dependencies at method level instead. The method-level de-

pendencies could be simply obtained from a TSD model by lift-

ing statements in the SDG up to corresponding (enclosing) meth-

ods. Yet, our MDG model represents these dependencies directly

with statement-level details within methods (i.e. intraprocedural

dependencies) abstracted away and, more importantly, does so

with much less computation than constructing the SDG would re-

quire. The MDG computes transitive interprocedural dependencies

in a context-insensitive manner with flow sensitivity dismissed

for heap-object-induced data dependencies too. Thus, it is more

efficient than TSD models (Horwitz et al., 1990; Yu and Rajlich,

2001). On the other hand, this abstraction captures whole-program

control and data dependencies, including those due to exception-

driven control flows (Sinha and Harrold, 20 0 0), thus it is more in-

formative than coarser models like call graphs or ICFG. With the

MDG, we attempt to not only address the above questions con-

cerning the latest peer approach SEA/SEB, but also to attain a more

cost-effective dependence abstraction over existing alternative op-

tions in general.

We implemented the MDG and applied it to both static and dy-

namic impact analysis for Java, 1 which are all evaluated on seven

non-trivial Java subject programs. We computed the accuracy of

the MDG for approximating forward dependencies in general and

the cost-effectiveness of its specific application in static impact

analysis; we also compared the accuracy and efficiency of the MDG

with respect to the TSD as ground truth against the SEA approach.

To explore how the MDG abstraction can be applied to and bene-

fit dynamic analysis, we developed on top of the MDG a variant of

Diver , the most cost-effective hybrid dynamic impact analysis in

the literature (Cai and Santelices, 2014), and compared its cost and

effectiveness against the original Diver .

Our results show that the MDG can approximate the TSD model

with perfect recall (100%) and generally high precision (85–90%

mostly) with great efficiency, at least for forward dependencies at

the method level. We also found that the MDG appears to be a

more cost-effective option than the SEA for the same purpose, ac-

cording to its significantly higher precision with better overall ef-

ficiency. The study also reveals that, for the object-oriented pro-

grams we used at least, SEA can be much less precise for approx-

imating forward dependencies at method level than previously re-

ported at class level for object-oriented programs (Beszédes et al.,

2007) and at method-level for procedural programs (Jász et al.,

2008; Jász, 2010). The study also demonstrated that the MDG as a

dependence abstraction model can significantly enhance the cost-

effectiveness of both the dependence-based static and dynamic im-

pact analysis techniques over the respective existing best alterna-

tives. More broadly, the MDG as a general program abstraction ap-

proach could benefit any applications that are based on program

dependencies at method level (e.g., testing and debugging) and

that utilize the dependencies at this or even higher levels (e.g.,

refactoring and performance optimizations).

In summary, the contributions of this paper are as follows:

• An approach to abstracting program dependencies to method

level, called the MDG, that can approximate traditional software

dependencies more accurately than existing options, including

dependencies due to exception-driven control flows (Section 3).
• An implementation of the MDG and two application analyses

based on it, a static impact analysis and a hybrid dynamic im-

pact analysis (Section 4.1).

1 Source code, documentation, and study results are available at https://chapring.

github.io/mdg .

https://chapering.github.io/mdg

Download	English	Version:

https://daneshyari.com/en/article/4956563

Download	Persian	Version:

https://daneshyari.com/article/4956563

Daneshyari.com

https://daneshyari.com/en/article/4956563
https://daneshyari.com/article/4956563
https://daneshyari.com/

