
ARTICLE IN PRESS

JID: JSS [m5G; March 28, 2016;17:45]

The Journal of Systems and Software 0 0 0 (2016) 1–18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

ScapeGoat: Spotting abnormal resource usage in component-based

reconfigurable software systems

I. Gonzalez-Herrera

a , ∗, J. Bourcier a , E. Daubert a , d , W. Rudametkin

b , O. Barais a , F. Fouquet c ,
J.M. Jézéquel a , B. Baudry

e

a University of Rennes 1-IRISA, Campus de Beaulieu, 35042 Rennes, France
b University of Lille 1, Cite Scientifique, 59655 Villeneuve d’Ascq Cedex, France
c University of Luxembourg, Security and Trust Lab, 1457 Luxembourg, Luxembourg
d CTO Energiency, 2 rue de la Châtaigneraie, 35510 Cesson-Sé vigné, France
e INRIA, Campus de Beaulieu, 35042 Rennes, France

a r t i c l e i n f o

Article history:

Received 20 October 2014

Revised 23 December 2015

Accepted 20 February 2016

Available online xxx

Keywords:

Resource monitoring

Component

Models@Run.Time

a b s t r a c t

Modern component frameworks support continuous deployment and simultaneous execution of multi-

ple software components on top of the same virtual machine. However, isolation between the various

components is limited. A faulty version of any one of the software components can compromise the

whole system by consuming all available resources. In this paper, we address the problem of efficiently

identifying faulty software components running simultaneously in a single virtual machine. Current solu-

tions that perform permanent and extensive monitoring to detect anomalies induce high overhead on the

system, and can, by themselves, make the system unstable. In this paper we present an optimistic adap-

tive monitoring system to determine the faulty components of an application. Suspected components

are finely analyzed by the monitoring system, but only when required. Unsuspected components are left

untouched and execute normally. Thus, we perform localized just-in-time monitoring that decreases the

accumulated overhead of the monitoring system. We evaluate our approach on two case studies against

a state-of-the-art monitoring system and show that our technique correctly detects faulty components,

while reducing overhead by an average of 93%.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many modern computing systems require precise performance

monitoring to deliver satisfying end user services. For example, in

pervasive, ubiquitous, building management or Internet of Things

systems, devices that are part of the system have limited resources.

The precise exploitation of these limited resources is important

to take the most out of these systems, therefore requiring a fine

and dynamic resource monitoring. Many other examples exist in

the area of cloud computing where the notion of elasticity and on

demand deployment is key to enable dynamic adaptation to user

demand (Galante and Bona, 2012). Indeed, the elasticity manage-

ment mechanism in charge of allocating and shrinking computing

∗ Corresponding authors. Tel.: +33 0687195442.

E-mail addresses: inti.glez@gmail.com , inti.gonzalez_herrera@irisa.fr

(I. Gonzalez-Herrera), johann.bourcier@irisa.fr (J. Bourcier), erwan.daubert@irisa.fr

(E. Daubert), walter.rudametkin@inria.fr (W. Rudametkin), barais@irisa.fr

(O. Barais), francois.fouquet@uni.lu (F. Fouquet), jezequel@irisa.fr (J.M. Jézéquel),

benoit.baudry@inria.fr (B. Baudry).

resources to match user demand, requires a precise performance

monitoring of the application to determine when to increase or de-

crease the amount of allocated resources. Another example can be

found in the cloud computing domain at the Software as a Service

level when services with various Quality of Services (QoS) are of-

fered to end users. The differentiation of QoS between two users

of the same services requires a precise performance monitoring of

the system to cope with the specified QoS.

To implement such behavior, these modern computing systems

must exhibit new properties, such as the dynamic adaptation

of the system to its environment (Rouvoy et al., 2009) and the

adaptation of the system to available resources (Poladian et al.,

2004). Modern Component based frameworks have been de-

signed to ease the developers’ tasks of assembling, deploying

and adapting a distributed system. By providing introspection,

reconfiguration, advanced technical services, among other facilities

(Garlan et al., 2004), component frameworks are good candidate

to assist software developers in developing resource-aware system.

These frameworks provide extensible middleware and assist de-

velopers in managing technical issues such as security, transaction

http://dx.doi.org/10.1016/j.jss.2016.02.027

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: I. Gonzalez-Herrera et al., ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable

software systems, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.02.027

http://dx.doi.org/10.1016/j.jss.2016.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:inti.glez@gmail.com
mailto:inti.gonzalez_herrera@irisa.fr
mailto:johann.bourcier@irisa.fr
mailto:erwan.daubert@irisa.fr
mailto:walter.rudametkin@inria.fr
mailto:barais@irisa.fr
mailto:francois.fouquet@uni.lu
mailto:jezequel@irisa.fr
mailto:benoit.baudry@inria.fr
http://dx.doi.org/10.1016/j.jss.2016.02.027
http://dx.doi.org/10.1016/j.jss.2016.02.027

2 I. Gonzalez-Herrera et al. / The Journal of Systems and Software 0 0 0 (2016) 1–18

ARTICLE IN PRESS

JID: JSS [m5G; March 28, 2016;17:45]

management, or distributed computing. They also support the

simultaneous execution of multiple software components on the

same virtual machine (The OSGi Alliance, 2012; Fouquet et al.,

2012; Bruneton et al., 2006).

Current monitoring mechanisms (Frénot and Stefan, 2004;

Kreger et al., 2003; Binder and Hulaas, 2006) continuously interact

with the monitored application to obtain precise data regarding

the amount of memory and I/O used, the time spent executing

a particular component or the number of call to a particular

interface. Despite their precision, these monitoring mechanisms

induce high overhead on the application; this prevents their use

in production environments. The overhead of a monitoring mecha-

nism can be up to a factor of 4.3 as shown in the results presented

in Binder et al. (2009) . As we discuss in Section 4 the performance

overhead grows with the size of the monitored software. Thus,

overhead greatly limits the scalability and usage of monitoring

mechanisms.

In this paper, we address excessive overhead in monitoring ap-

proaches by introducing an optimistic adaptive monitoring system

that provides lightweight global monitoring under normal condi-

tions, and precise and localized monitoring when problems are

detected. Although our approach reduces the accumulated amount

of overhead in the system, it also introduces a delay in finding

the source of a faulty behavior. Our objective is to provide an ac-

ceptable trade-off between the overhead and the delay to identify

the source of faulty behavior in the system. Our approach targets

component-models written in object-oriented languages, and it

is only able to monitor the resource consumption of components

running atop a single execution environment. In this paper, we dis-

cuss how we can leverage our proposal to provide the foundations

for resource consumption monitoring in distributed environments.

Our optimistic adaptive monitoring system is based on the fol-

lowing principles:

• Contract-based resource usage. The monitoring system follows

component-based software engineering principles. Each compo-

nent is augmented with a contract that specifies their expected

or previously calculated resource usage (Beugnard et al., 1999).

The contracts specify how a component uses memory, I/O and

CPU resources.
• Localized just-in-time injection and activation of monitoring

probes. Under normal conditions our monitoring system per-

forms a lightweight global monitoring of the system. When a

problem is detected at the global level, our system activates lo-

cal monitoring probes on specific components in order to iden-

tify the source of the faulty behavior. The probes are specifi-

cally synthesized according to the component’s contract to limit

their overhead. Thus, only the required data are monitored (e.g.,

only memory usage is monitored when a memory problem is

detected), and only when needed.
• Heuristic-guided search of the problem source. We use a

heuristic to reduce the delay of locating a faulty component

while maintaining an acceptable overhead. This heuristic is

used to inject and activate monitoring probes on the sus-

pected components. However, overhead and latency in finding

the faulty component are greatly impacted by the precision of

the heuristic. A heuristic that quickly locates faulty components

will reduce both delays and the accumulated overhead of the

monitoring system. We propose using Models@run.time tech-

niques in order to build an efficient heuristic.

The evaluation of our optimistic adaptive monitoring system

shows that, in comparison to other state-of-the-art approaches,

the overhead of the monitoring system is reduced by up to 93%.

Regarding latency, our heuristic reduces the delay to identify the

faulty component when changing from global, lightweight moni-

toring to localized, just-in-time monitoring. We also present a use

case to highlight the possibility of using ScapeGoat on a real ap-

plication, that shows how to automatically find buggy components

on a scalable modular web application.

An early version of the ScapeGoat monitoring framework is pre-

sented in Gonzalez-Herrera et al. (2014) . This paper introduces four

new majors contributions:

• The paper includes a new mechanism to monitor memory

consumption that can be turned on/off. In Gonzalez-Herrera

et al. (2014) , memory monitoring cannot be turned off. As a

consequence, the probes used to account for memory consump-

tion are always activated. This impacts the performance of the

system even when in global monitoring mode. In this paper, we

propose a mechanism to avoid any kind of overhead when in

global monitoring mode thank to the new monitoring mecha-

nism. Using this new mechanism we reduce even more the per-

formance overhead in terms of CPU consumption and we avoid

overhead in terms of memory consumption.
• New experiments to assess the performance impact of

the proposed mechanism to compute memory consumption

monitoring .
• In addition to the experiments proposed in Gonzalez-Herrera

et al. (2014) , a new use case is used to evaluate the monitor-

ing framework .
• We show how to generalize the approach to deal with proper-

ties other than CPU, memory and related resources.

The remainder of this paper is organized as follows.

Section 2 presents the background on Models@run.time and

motivates our work through a case study which is used to

validate the approach. Section 3 provides an overview of the

ScapeGoat framework. It highlights how the component contracts

are specified, how monitoring probes are injected and activated

on-demand, how the ScapeGoat framework enables the definition

of heuristics to detect faulty components without activating all

the probes, and how we benefit from Models@run.time to build

efficient heuristics. Section 4 validates the approach through

a comparison of detection precision and detection speed with

other approaches. Section 5 presents a use case based on an

online web application

1 which leverages software diversity for

safety and security purposes. In Section 6 highlights interesting

points and ways to apply our approach to other contexts. Finally,

Section 7 discusses related work and Section 8 discusses the

approach and presents our conclusion and future work.

2. Background and motivating example

2.1. Motivating example

In this section we present a motivating example for the use

of an optimistic adaptive monitoring process in the context of a

real-time crisis management system in a fire department. During

a dangerous event, many firefighters are present and need to col-

laborate to achieve common goals. Firefighters have to coordinate

among themselves and commanding officers need to have an ac-

curate real-time view of the system.

The Daum project 2 provides a software application that sup-

ports firefighters in these situations. The application runs on

devices with limited computational resources because it must

be mobile and taken on-site. It provides numerous services for

firefighters depending on their role in the crisis. In this paper we

focus on the two following roles:

1 http://cloud.diversify-project.eu/ .
2 https://github.com/daumproject .

Please cite this article as: I. Gonzalez-Herrera et al., ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable

software systems, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.02.027

http://cloud.diversify-project.eu/
https://github.com/daumproject
http://dx.doi.org/10.1016/j.jss.2016.02.027

Download English Version:

https://daneshyari.com/en/article/4956569

Download Persian Version:

https://daneshyari.com/article/4956569

Daneshyari.com

https://daneshyari.com/en/article/4956569
https://daneshyari.com/article/4956569
https://daneshyari.com

