JID: JSS [m5G;March 28, 2016;17:45]

The Journal of Systems and Software 000 (2016) 1-18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

ScapeGoat: Spotting abnormal resource usage in component-based
reconfigurable software systems

I. Gonzalez-Herrera®*, J. Bourcier?, E. Daubert®d, W. Rudametkin®, O. Barais? F. Fouquet®,
J.M. Jézéquel?, B. Baudry®

@ University of Rennes 1-IRISA, Campus de Beaulieu, 35042 Rennes, France

b University of Lille 1, Cite Scientifique, 59655 Villeneuve d’Ascq Cedex, France

¢ University of Luxembourg, Security and Trust Lab, 1457 Luxembourg, Luxembourg
4 CTO Energiency, 2 rue de la Chdtaigneraie, 35510 Cesson-Sé vigné, France
¢INRIA, Campus de Beaulieu, 35042 Rennes, France

ARTICLE INFO ABSTRACT

Article history:

Received 20 October 2014
Revised 23 December 2015
Accepted 20 February 2016
Available online xxx

Modern component frameworks support continuous deployment and simultaneous execution of multi-
ple software components on top of the same virtual machine. However, isolation between the various
components is limited. A faulty version of any one of the software components can compromise the
whole system by consuming all available resources. In this paper, we address the problem of efficiently
identifying faulty software components running simultaneously in a single virtual machine. Current solu-

Keywords: tions that perform permanent and extensive monitoring to detect anomalies induce high overhead on the
Resource monitoring system, and can, by themselves, make the system unstable. In this paper we present an optimistic adap-
Component tive monitoring system to determine the faulty components of an application. Suspected components
Models@Run.Time

are finely analyzed by the monitoring system, but only when required. Unsuspected components are left
untouched and execute normally. Thus, we perform localized just-in-time monitoring that decreases the
accumulated overhead of the monitoring system. We evaluate our approach on two case studies against
a state-of-the-art monitoring system and show that our technique correctly detects faulty components,

while reducing overhead by an average of 93%.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many modern computing systems require precise performance
monitoring to deliver satisfying end user services. For example, in
pervasive, ubiquitous, building management or Internet of Things
systems, devices that are part of the system have limited resources.
The precise exploitation of these limited resources is important
to take the most out of these systems, therefore requiring a fine
and dynamic resource monitoring. Many other examples exist in
the area of cloud computing where the notion of elasticity and on
demand deployment is key to enable dynamic adaptation to user
demand (Galante and Bona, 2012). Indeed, the elasticity manage-
ment mechanism in charge of allocating and shrinking computing

* Corresponding authors. Tel.: +33 0687195442.
E-mail addresses: inti.glez@gmail.com, inti.gonzalez_herrera@irisa.fr
(L. Gonzalez-Herrera), johann.bourcier@irisa.fr (J. Bourcier), erwan.daubert@irisa.fr
(E. Daubert), walter.rudametkin@inria.fr (W. Rudametkin), barais@irisa.fr
(0. Barais), francois.fouquet@uni.lu (F. Fouquet), jezequel@irisa.fr (J.M. Jézéquel),
benoit.baudry@inria.fr (B. Baudry).

http://dx.doi.org/10.1016/j.jss.2016.02.027
0164-1212/© 2016 Elsevier Inc. All rights reserved.

resources to match user demand, requires a precise performance
monitoring of the application to determine when to increase or de-
crease the amount of allocated resources. Another example can be
found in the cloud computing domain at the Software as a Service
level when services with various Quality of Services (QoS) are of-
fered to end users. The differentiation of QoS between two users
of the same services requires a precise performance monitoring of
the system to cope with the specified QoS.

To implement such behavior, these modern computing systems
must exhibit new properties, such as the dynamic adaptation
of the system to its environment (Rouvoy et al., 2009) and the
adaptation of the system to available resources (Poladian et al.,
2004). Modern Component based frameworks have been de-
signed to ease the developers’ tasks of assembling, deploying
and adapting a distributed system. By providing introspection,
reconfiguration, advanced technical services, among other facilities
(Garlan et al., 2004), component frameworks are good candidate
to assist software developers in developing resource-aware system.
These frameworks provide extensible middleware and assist de-
velopers in managing technical issues such as security, transaction

Please cite this article as: I. Gonzalez-Herrera et al., ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable
software systems, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/].jss.2016.02.027



http://dx.doi.org/10.1016/j.jss.2016.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:inti.glez@gmail.com
mailto:inti.gonzalez_herrera@irisa.fr
mailto:johann.bourcier@irisa.fr
mailto:erwan.daubert@irisa.fr
mailto:walter.rudametkin@inria.fr
mailto:barais@irisa.fr
mailto:francois.fouquet@uni.lu
mailto:jezequel@irisa.fr
mailto:benoit.baudry@inria.fr
http://dx.doi.org/10.1016/j.jss.2016.02.027
http://dx.doi.org/10.1016/j.jss.2016.02.027

JID: JSS

[m5G;March 28, 2016;17:45]

2 1. Gonzalez-Herrera et al./The Journal of Systems and Software 000 (2016) 1-18

management, or distributed computing. They also support the
simultaneous execution of multiple software components on the
same virtual machine (The OSGi Alliance, 2012; Fouquet et al.,
2012; Bruneton et al., 2006).

Current monitoring mechanisms (Frénot and Stefan, 2004;
Kreger et al., 2003; Binder and Hulaas, 2006) continuously interact
with the monitored application to obtain precise data regarding
the amount of memory and I/O used, the time spent executing
a particular component or the number of call to a particular
interface. Despite their precision, these monitoring mechanisms
induce high overhead on the application; this prevents their use
in production environments. The overhead of a monitoring mecha-
nism can be up to a factor of 4.3 as shown in the results presented
in Binder et al. (2009). As we discuss in Section 4 the performance
overhead grows with the size of the monitored software. Thus,
overhead greatly limits the scalability and usage of monitoring
mechanisms.

In this paper, we address excessive overhead in monitoring ap-
proaches by introducing an optimistic adaptive monitoring system
that provides lightweight global monitoring under normal condi-
tions, and precise and localized monitoring when problems are
detected. Although our approach reduces the accumulated amount
of overhead in the system, it also introduces a delay in finding
the source of a faulty behavior. Our objective is to provide an ac-
ceptable trade-off between the overhead and the delay to identify
the source of faulty behavior in the system. Our approach targets
component-models written in object-oriented languages, and it
is only able to monitor the resource consumption of components
running atop a single execution environment. In this paper, we dis-
cuss how we can leverage our proposal to provide the foundations
for resource consumption monitoring in distributed environments.

Our optimistic adaptive monitoring system is based on the fol-
lowing principles:

o Contract-based resource usage. The monitoring system follows
component-based software engineering principles. Each compo-
nent is augmented with a contract that specifies their expected
or previously calculated resource usage (Beugnard et al., 1999).
The contracts specify how a component uses memory, I/O and
CPU resources.

Localized just-in-time injection and activation of monitoring
probes. Under normal conditions our monitoring system per-
forms a lightweight global monitoring of the system. When a
problem is detected at the global level, our system activates lo-
cal monitoring probes on specific components in order to iden-
tify the source of the faulty behavior. The probes are specifi-
cally synthesized according to the component’s contract to limit
their overhead. Thus, only the required data are monitored (e.g.,
only memory usage is monitored when a memory problem is
detected), and only when needed.

Heuristic-guided search of the problem source. We use a
heuristic to reduce the delay of locating a faulty component
while maintaining an acceptable overhead. This heuristic is
used to inject and activate monitoring probes on the sus-
pected components. However, overhead and latency in finding
the faulty component are greatly impacted by the precision of
the heuristic. A heuristic that quickly locates faulty components
will reduce both delays and the accumulated overhead of the
monitoring system. We propose using Models@run.time tech-
niques in order to build an efficient heuristic.

The evaluation of our optimistic adaptive monitoring system
shows that, in comparison to other state-of-the-art approaches,
the overhead of the monitoring system is reduced by up to 93%.
Regarding latency, our heuristic reduces the delay to identify the
faulty component when changing from global, lightweight moni-
toring to localized, just-in-time monitoring. We also present a use

case to highlight the possibility of using ScapeGoat on a real ap-
plication, that shows how to automatically find buggy components
on a scalable modular web application.

An early version of the ScapeGoat monitoring framework is pre-
sented in Gonzalez-Herrera et al. (2014). This paper introduces four
new majors contributions:

o The paper includes a new mechanism to monitor memory
consumption that can be turned on/off. In Gonzalez-Herrera
et al. (2014), memory monitoring cannot be turned off. As a
consequence, the probes used to account for memory consump-
tion are always activated. This impacts the performance of the
system even when in global monitoring mode. In this paper, we
propose a mechanism to avoid any kind of overhead when in
global monitoring mode thank to the new monitoring mecha-
nism. Using this new mechanism we reduce even more the per-
formance overhead in terms of CPU consumption and we avoid
overhead in terms of memory consumption.

o New experiments to assess the performance impact of
the proposed mechanism to compute memory consumption
monitoring.

o In addition to the experiments proposed in Gonzalez-Herrera
et al. (2014), a new use case is used to evaluate the monitor-
ing framework.

o We show how to generalize the approach to deal with proper-
ties other than CPU, memory and related resources.

The remainder of this paper is organized as follows.
Section 2 presents the background on Models@run.time and
motivates our work through a case study which is used to
validate the approach. Section 3 provides an overview of the
ScapeGoat framework. It highlights how the component contracts
are specified, how monitoring probes are injected and activated
on-demand, how the ScapeGoat framework enables the definition
of heuristics to detect faulty components without activating all
the probes, and how we benefit from Models@run.time to build
efficient heuristics. Section 4 validates the approach through
a comparison of detection precision and detection speed with
other approaches. Section 5 presents a use case based on an
online web application' which leverages software diversity for
safety and security purposes. In Section 6 highlights interesting
points and ways to apply our approach to other contexts. Finally,
Section 7 discusses related work and Section 8 discusses the
approach and presents our conclusion and future work.

2. Background and metivating example
2.1. Motivating example

In this section we present a motivating example for the use
of an optimistic adaptive monitoring process in the context of a
real-time crisis management system in a fire department. During
a dangerous event, many firefighters are present and need to col-
laborate to achieve common goals. Firefighters have to coordinate
among themselves and commanding officers need to have an ac-
curate real-time view of the system.

The Daum project? provides a software application that sup-
ports firefighters in these situations. The application runs on
devices with limited computational resources because it must
be mobile and taken on-site. It provides numerous services for
firefighters depending on their role in the crisis. In this paper we
focus on the two following roles:

T http://cloud.diversify-project.eu/.
2 https://github.com/daumproject.

Please cite this article as: I. Gonzalez-Herrera et al., ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable
software systems, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.js5.2016.02.027



http://cloud.diversify-project.eu/
https://github.com/daumproject
http://dx.doi.org/10.1016/j.jss.2016.02.027

Download English Version:

https://daneshyari.com/en/article/4956569

Download Persian Version:

https://daneshyari.com/article/4956569

Daneshyari.com


https://daneshyari.com/en/article/4956569
https://daneshyari.com/article/4956569
https://daneshyari.com

