JID: JSS

[m5G;July 2, 2016;13:32]

The Journal of Systems and Software 000 (2016) 1-15

The Journal of Systems and Software

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jss

Optimal control based regression test selection for service-oriented

workflow applications

Hongda Wang?, Jianchun Xing?* Qiliang Yang®P, Ping Wang?, Xuewei Zhang?,

Deshuai Han*®

aCollege of Defense Engineering, PLA University of Science and Technology, Nanjing, China
b State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

ARTICLE INFO

ABSTRACT

Article history:

Received 14 December 2014
Revised 28 April 2016
Accepted 23 June 2016
Available online xxx

Keywords:

Software cybernetics

Optimal control

Service-oriented workflow applications
Regression test selection

Behavioral difference

BPEL program dependence graph

Safe

Regression test selection, which is well known as an effective technology to ensure the quality of mod-
ified BPEL applications, is regarded as an optimal control issue. The BPEL applications under test serves
as a controlled object and the regression test selection strategy functions as the corresponding controller.
The performance index is to select fewest test cases to test modified BPEL applications. In addition, a
promising controller (regression test selection approach) should be safe, which means that it can select
all test cases in which faults might be exposed in modified versions under controlled regression test-
ing from the original test suite. However, existing safe controllers may rerun some test cases without
exposing fault. In addition, the unique features (e.g., dead path elimination semantics, communication
mechanism, multi-assignment etc.) of BPEL applications also raise enormous problems in regression test
selection. To address these issues, we present in this paper a safe optimal controller for BPEL applications.
Firstly, to handle the unique features mentioned above, we transform BPEL applications and their modi-
fied versions into universal BPEL forms. Secondly, For our optimal controller, BPEL program dependence
graphs corresponding to the two universal BPEL forms are established. Finally, guided by behavioral dif-
ferences between the two versions, we construct an optimal controller and select test cases to be rerun.
By contrast with the previous approaches, our approach can eliminate some unnecessary test cases to
be selected. We conducted experiments with 8 BPEL applications to compare our approach with other
typical approaches. Experimental results show that the test cases selected using our approach are fewer

than other approaches.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

With the emergence of cloud computing, service-oriented work-
flow, a large-scale programming mode, has gradually become a
mainstream technology for developing instant applications in an
open environment (Canfora and Di Penta, 2009, Fu et al., 2004).
Web Service Business Process Execution Language (WS-BPEL or
BPEL) is one of the most popular standards for developing service-
oriented workflow applications. BPEL applications can provide
value-added services by compositing Web Services or other BPEL
applications. However, these applications usually present some
faults or defects, particularly during the evolution of service com-
position. Maintenance of these applications is expensive. On an av-
erage, these activities (especially regression testing) account for as

* Corresponding author.
E-mail addresses: wanghongda000@126.com (H. Wang), xjc@893.com.cn (J.
Xing), yql@893.com.cn (Q. Yang).

http://dx.doi.org/10.1016/j.jss.2016.06.065
0164-1212/© 2016 Elsevier Inc. All rights reserved.

much as two-thirds of the overall software life cycle cost (Beizer,
2003, Leung and White, 1989). The cost of regression testing could
be reduced if old test cases and results were reused. Therefore, re-
gression test selection (also concerned as selective retest technique),
one of the most important approaches to provide confidence dur-
ing software evolution, has gained growing concerns in recent
years (Epifani et al,, 2010, Zhu and Zhang, 2012, Li et al., 2008).
Regression test selection, which is well known as an effective
technology to ensure the quality of modified BPEL applications, is
regarded as an optimal control issue. The BPEL applications under
test serves as a controlled object. The test results servers as feed-
back and the regression test selection strategy functions as the cor-
responding controller. By selecting some subsets of the original test
cases to be rerun, regression test selection approach attempts to
reduce the time and resources required to retest a modified BPEL
application. The performance index of this control issue is to se-
lect fewest test cases to test modified BPEL applications, which
is similar to the famous least fuel control issue in the optimal

Please cite this article as: H. Wang et al., Optimal control based regression test selection for service-oriented workflow applications, The
Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.065



http://dx.doi.org/10.1016/j.jss.2016.06.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:wanghongda000@126.com
mailto:xjc@893.com.cn
mailto:yql@893.com.cn
http://dx.doi.org/10.1016/j.jss.2016.06.065
http://dx.doi.org/10.1016/j.jss.2016.06.065

JID: JSS

[m5G;July 2, 2016;13:32]

2 H. Wang et al./The Journal of Systems and Software 000 (2016) 1-15

control area (Khalil, 2001). In addition, a promising controller (re-
gression test selection approach) should be safe (Rothermel and
Harrold, 1996), which means that it can select all test cases in
which faults might be exposed in modified versions under con-
trolled regression testing from the original test suite. This problem
has been extensively studied for a long time (Liu et al., 2007, Li et
al., 2012, Lin et al., 2006, Ruth and Tu, 2007). However, most of
the existing approaches identify affected components to be retested
from syntactic perspective rather than semantic (behavioral) per-
spective. For example, to ensure correctness or to improve effi-
ciency of service composition, it is common to rearrange or par-
allelize two activities (Song et al., 2011, Ni et al., 2011) in BPEL
applications. In this case, some approaches may rerun some un-
necessary test cases that without exposing any faults to test the
modified BPEL application (e.g., (Liu et al., 2007, Li et al., 2012))
due to different syntaxes presented by the two activities in two
versions. Our observation is that the state is consistent after the
execution of the two corresponding activities in the two versions.
In other words, although the execution orders of the two activi-
ties in two versions are different, these two activities may have
equivalent behavior. Therefore, the activities in modified BPEL ap-
plication are not affected components and this application does
not need to be retested. Although some approaches (e.g., (Agrawal
et al., 1993, Bates and Horwitz, 1993)) have studied this problem
from behavioral perspective, they are not safe, i.e., they may ne-
glect some necessary test cases that could detect faults in modified
versions. In addition, the unique features (dead path elimination
semantics, communication mechanism, multi-assignment, etc.) of
BPEL language also bring enormous problems for the issue of re-
gression test selection. For example, two activities of BPEL applica-
tions may have different forms (syntaxes) but same behavior due
to these unique features. Therefore, the modified BPEL applications
may also not need to be retested. However, few studies have fo-
cused on this phenomenon. To address these issues, we present in
this paper a safe controller or regression test selection approach
guided by behavior difference of activities, which is computed with
BPEL program dependence graphs and program slices. Our approach
is inspired by a heuristic rule, that is, if the activity behavior in the
modified BPEL application is different from that of the old version,
its corresponding test cases need to be selected.

Program dependence graphs are an intermediate representation
of programs which characterizing control and data dependency re-
lations between the statements of programs in software engineer-
ing. Program dependence graphs have previously been introduced
for its usages in incremental program testing (Bates and Horwitz,
1993), optimizing, and program analyzing (Ferrante et al., 1987).
BPEL program dependence graph extends the notion of program
dependence graph by introducing some new dependence relation.
In this paper, we adopt BPEL program dependence graphs and the
program slicing approaches to identify all affected components of
the modified BPEL applications that need to be retested. By using
a semantic (behavioral) rather than a syntactic definition of “af-
fected components”, our approach can identify BPEL components
that have been directly or transitively affected by the modifica-
tions anywhere in BPEL applications. There are three steps in our
approach. Firstly, to facilitate later comparison of program depen-
dence graphs, three rules are given to transform BPEL applica-
tions into universal BPEL forms. These three rules correspond to the
unique features of dead path elimination, communication mech-
anism and multi-assignment respectively. Secondly, program de-
pendence graphs corresponding to the two universal BPEL forms
(BPEL application and its modified version) have been established.
To this end, all kinds of BPEL program dependencies between ac-
tivities should be analyzed. We mainly capture control dependency,
data dependency and asyn-invocation dependency (Song et al., 2011).
Finally, we adopt program slicing approach to identify all affected

components of the modified BPEL applications and select corre-
sponding tests to be rerun. Our approach is able to select not only
test cases that execute new or modified activities, but also those
previously executed the activities deleted from the modified BPEL
application. Based on its performance, we can prove our controller
is safe. Compared with the previous approaches or controllers, our
controller can eliminate some unnecessary test cases to be rerun.
We conducted experiments using our approach and other typical
approaches with 8 BPEL applications. Experimental results demon-
strate that the test cases selected using our approach are fewer
than other approaches.
This paper mainly makes the following three contributions:

o Regression test selection problem is treated as an optimal con-
trol issue, and an optimal control strategy is presented.

o With the unique features of BPEL language, three rules are
given to transform any BPEL applications into a universal BPEL
form. Using this transformation, our approach proposed in this
paper can be applied directly in software engineering.

o With a semantic (behavioral) definition on affected compo-
nents, our controller can select fewer test cases to test modified
BPEL applications effectively. Also, we prove that our controller
is safe under controlled regression testing.

The rest of this paper is organized as follows. Section 2 shows
a running example to motivate our approach, followed by some
preliminaries. Section 3 presents our approach. Section 4 reports
the experiments based on our proposal. Section 5 illustrates some
discussions about our approach. Section 6 reviews some related
works. Section 7 gives a summary and future work.

2. Background

In this section, we show a running example to motivate our ap-
proach, followed by some preliminaries about BPEL language and
BPEL program dependency graph.

2.1. A running example

In this subsection, we use a BPEL application travel agency,
which is adapted from Travel, as a running example to motivate
our approach. This is a so well-known and carefully designed ap-
plication used in many researches (Song et al., 2011, Van Der Aalst
et al., 2008). First, we give a brief overview of this application.

For intuitive expression, we use UML activity diagrams insti-
tuting of BPEL codes (in XML format) to depict these applica-
tions. In each activity diagram, a node represents a BPEL activ-
ity and an edge stands for a transition between two activities.
In addition, we also annotate the nodes with extracted applica-
tion information, such as input and output parameters of activities.
Fig. 1(a) is the initial version V7, which depicts a BPEL application
of a travel agency. On receiving ordering information from a client,
the travel agency application can choose appropriate flight service
and hotel service for the client. At the same time, this application
records the ordering information received from all clients to es-
tablish a database. Finally, this application gives the result (confir-
mation message of services) back to the client. With the increas-
ing uses of this BPEL application, supposing the developer gradu-
ally found some deficiencies in this application. Therefore, the de-
veloper made the following incremental modifications. Each corre-
sponds to a BPEL application version.

(1) At the beginning, the developer found that there was no
need to use two activities to assign airlinelnput and hotelln-
put to variable query at all. According to the BPEL specifica-
tion (WS-BPEL 2.0 Specification 2007), they can be merged
together into one activity. As a result, the developer modi-
fied version V; to version V, in Fig. 1(b).

Please cite this article as: H. Wang et al., Optimal control based regression test selection for service-oriented workflow applications, The
Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.06.065



http://dx.doi.org/10.1016/j.jss.2016.06.065

Download English Version:

https://daneshyari.com/en/article/4956599

Download Persian Version:

https://daneshyari.com/article/4956599

Daneshyari.com


https://daneshyari.com/en/article/4956599
https://daneshyari.com/article/4956599
https://daneshyari.com

