
The Journal of Systems and Software 123 (2017) 160–172

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Understanding the syntactic rule usage in java

Dong Qiu

a , Bixin Li a , ∗, Earl T. Barr b , Zhendong Su

c

a School of Computer Science and Engineering, Southeast University, China
b Department of Computer Science, University College London, UK
c Department of Computer Science, University of California Davis, USA

a r t i c l e i n f o

Article history:

Received 1 February 2016

Revised 26 September 2016

Accepted 19 October 2016

Available online 20 October 2016

Keywords:

Language syntax

Empirical study

Practical language usage

a b s t r a c t

Context: Syntax is fundamental to any programming language: syntax defines valid programs. In the

1970s, computer scientists rigorously and empirically studied programming languages to guide and in-

form language design. Since then, language design has been artistic, driven by the aesthetic concerns and

intuitions of language architects. Despite recent studies on small sets of selected language features, we

lack a comprehensive, quantitative, empirical analysis of how modern, real-world source code exercises

the syntax of its programming language.

Objective: This study aims to understand how programming language syntax is employed in actual devel-

opment and explore their potential applications based on the results of syntax usage analysis.

Method: We present our results on the first such study on Java, a modern, mature, and widely-used

programming language. Our corpus contains over 50 0 0 open-source Java projects, totalling 150 million

source lines of code (SLoC). We study both independent (i.e. applications of a single syntax rule) and de-

pendent (i.e. applications of multiple syntax rules) rule usage, and quantify their impact over time and

project size.

Results: Our study provides detailed quantitative information and yields insight, particularly (i) confirming

the conventional wisdom that the usage of syntax rules is Zipfian; (ii) showing that the adoption of new

rules and their impact on the usage of pre-existing rules vary significantly over time; and (iii) showing

that rule usage is highly contextual.

Conclusions: Our findings suggest potential applications across language design, code suggestion and com-

pletion, automatic syntactic sugaring, and language restriction.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Syntax and semantics define a programming language. Infor-

mally, a language has many features. A language’s syntactic rules

provide the most direct means to measure the use of a language’s

features. Thousands of programming languages exist; each embod-

ies a different set of possible language features. Language design-

ers usually have limited knowledge on how programmers actu-

ally use a language (Knuth, 1971). This leads to many unnatural

and rarely used features being introduced, while expected ones

not introduced (Strangest language feature, 2016; Your language

sucks, 2016). In addition, many language features, especially lan-

guage syntax, remain a significant barrier to novice programmers

(Denny et al., 2011; Stefik and Siebert, 2013).

∗ Corresponding author. Fax: 86 25 52090879.

E-mail addresses: dongqiu@seu.edu.cn (D. Qiu), bx.li@seu.edu.cn (B. Li),

e.barr@ucl.ac.uk (E.T. Barr), su@cs.ucdavis.edu (Z. Su).

We tackle the question of how to systematically understand

these features and their usage. Rather than ad-hoc characteriza-

tions of features, we propose the use of language grammars to

precisely and systematically characterize language features. Indeed,

most programming language features quite directly map onto syn-

tactic constructs. Therefore, we study how programmers use lan-

guage features by analyzing their use of the language syntax.

Knuth conducted the first study to understand how program-

mers use fortran over 40 years ago (Knuth, 1971). Similar stud-

ies were subsequently performed on COBOL (Salvadori et al., 1975;

Chevance and Heidet, 1978), APL (Saal and Weiss, 1977) and

Pascal (Cook and Lee, 1982) between the 1970s and 1980s. In

recent decades, there has been little quantitative study demon-

strating how a modern programming language is used in practice,

especially from the perspective of language syntax. Previous stud-

ies have investigated the use of subsets of language features (e.g. ,

Java generics (Parnin et al., 2011) and Java reflection (Livshits et al.,

2005)). Although Dyer et al. (Dyer et al., 2014) investigated the use

http://dx.doi.org/10.1016/j.jss.2016.10.017

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.10.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.10.017&domain=pdf
mailto:dongqiu@seu.edu.cn
mailto:bx.li@seu.edu.cn
mailto:e.barr@ucl.ac.uk
mailto:su@cs.ucdavis.edu
http://dx.doi.org/10.1016/j.jss.2016.10.017

D. Qiu et al. / The Journal of Systems and Software 123 (2017) 160–172 161

of newly-introduced features over three main language releases,

they only examined a relatively small subset of language features

and did not consider pre-existing features.

Studying how a large number of real-world programs use lan-

guage syntax may help validate or disprove the many popular ”the-

ories” about what language features are most popular, most use-

ful, easiest to use, etc. that abound in popular literature about pro-

gramming and on the Internet. In addition, the gap between lan-

guage features and their actual usage may guide pedagogy, giving

teachers insight into how to teach a programming language in a

better way. Language designers may leverage data on actual syn-

tactic rule usage to optimize the design of languages, e.g. simpli-

fying unpopular features or identifying boilerplate that could be

eliminated. We will provide concrete examples when presenting

our detailed study results.

To this end, we perform a large-scale empirical study on a di-

verse corpus of over 5,0 0 0 real-world Java projects to gain insight

into how syntactic rules are used in practice. We generate abstract

syntax trees (ASTs) for approximately 150 million SLoC, and tabu-

late and analyze the occurrences of all syntactic rules. In particu-

lar, to understand how syntax rules are used over time, we have

checked out over 13,0 0 0 versions from the studied projects’ revi-

sion histories to understand rule usage evolution.

We also perform depth-2 bounded nesting analysis to investi-

gate dependent rule usage. Indeed, when using a grammar to parse

a string, some nonterminals in the grammar can be reached only

after another nonterminal has been traversed. For X, Y ∈ N , the

set of nonterminals, and α, β ∈ (N ∪ T) ∗ where T is the set of

terminals, we write X
∗→ αY β to denote that Ydepends on X . We

bound this dependency because, in the limit, all nonterminals vac-

uously depend on the grammar’s start symbol. In this work, we

consider k = 2 and report our dependency results for X
2 → αY β,

as these short range dependencies are closer to the sentences that

programmers write and think about and thus are better candidates

for identifying idioms.

In summary, this paper makes the following contributions:

• It presents the first effort in 30 years to conduct a large-scale,

comprehensive, empirical analysis of the use of language con-

structs in a modern programming language, namely Java;
• This work is the first to study dependent rule usage and quan-

tify its contextual nature. This is also the first to study the evo-

lution of rule usage over time, the adoption of new rules, and

how new rules impact the usage of pre-existing ones.
• The results show that: (i) 20% of the most-used rules account

for 85% of all rule usage, while 65% of the least-used rules are

used < 5% of the time and 40% only < 1% of the time; (ii)

16.7% of the rules are unpopular and are adopted in < 25% of

the projects (e.g. assert statement, labeled statement, and

empty statement); and (iii) for dependent rule usage, 6% of the

combinations exhibit strong dependency with > 50% probabil-

ity.

Taken together, our results permit language designers to em-

pirically consider whether new constructs are likely to be worth

the cost of their implementation and deployment. They also iden-

tify boilerplate (i.e. repetitive rule usage) that new constructs may

profitably replace. For example, we have observed a reduced use

of anonymous class declarations, while an increased use of the

enhanced-for constructs w.r.t. all syntactic rule usage. We believe

that work like ours enables data-driven language design, analogous

to how Cocke’s study at IBM in the 1970s on the actual usage of

CISC instructions eventually led to the RISC architectures.

Table 1

Overview and evolution of the JLSs.

Version Release date #Added rules #Updated rules

JLS1 1996 115 –

JLS2 20 0 0 4 –

JLS3 2005 12 16

JLS4 2013 1 2

Table 2

Summary statistics on the Java code corpus.

Corpus summary

Repository Github

of projects 5,646

of files 1,392,528

Lines of code 144,081,228

Project scale range (# of files) 1 ∼39,247

Project history range (# of years) 1 ∼17

Project commits range (# of commits) 1 ∼123, 938

2. Study design and results

This section describes our methodology in detail, with special

attention given to the study subject and the research questions,

followed by our general findings.

2.1. Study subject

Java syntax. To understand how programmers adopt syntax,

we selected Java, a modern, mature and widely-used programming

language as our research subject. Java’s syntax is the set of rules

defining how a Java program is written and interpreted; it is es-

sentially a dialect of C/C++. Major releases of the Java Language

Specification (JLS) track its constant evolution.

In this paper, we survey 132 syntactic rules in total, distributed

in JL S1 ∼ JL S4 1 Gosling et al. (1996) ; 20 0 0); 20 05); 2013). Table 1

lists the distribution, including the release date and correspond-

ing updates. In contrast to the study by Dyer et al. (2014) , which

focuses on the newly imported language syntax rules, we concen-

trate on the complete set of the syntactic rules. The details of the

rules can be found online 2 .

Code corpus. Our corpus is a large (around 150 million SLoC)

collection of open-source real-world Java programs containing

5,646 projects retrieved from Github, one of the most popular

repositories. The projects were selected based on their popularity

(i.e. size of watchers, stars and forks). The corpus contains not only

widely-used Java projects maintained by reputable open-source or-

ganizations (e.g. Tomcat, Hadoop, Derby from the Apache Software

Foundation and JDT, PDT, EGIT from the Eclipse Foundation), but

also small projects developed by novice programmers. All these

projects are managed by Git, one of the most popular version con-

trol systems in the open-source community. Table 2 provides sum-

mary statistics on the corpus.

The corpus is also diverse, covering projects of different size

and development history. It contains small, medium and large

projects, where the number of Java files within projects ranges

from 1 to 39,247. The corpus also includes projects with short,

medium and long lifecycles, where their development years span

from 1 to 17 and the commits with each repository range from 1

to 123,938. The corpus thus provides a wide and comprehensive

range of projects on which to study the evolution of syntactic rule

usage.

1 For simplicity, JL S1, JL S2, JL S3 and JLS4 are used to represent the 1st edition,

2nd edition, 3rd edition and Java SE 7 edition of the JLS, respectively.
2 It is available at: http://dong-qiu.github.io/papers/lang _ syntax/appendix.pdf .

http://dong-qiu.github.io/papers/lang_syntax/appendix.pdf

Download	English	Version:

https://daneshyari.com/en/article/4956612

Download	Persian	Version:

https://daneshyari.com/article/4956612

Daneshyari.com

https://daneshyari.com/en/article/4956612
https://daneshyari.com/article/4956612
https://daneshyari.com/

