
The Journal of Systems and Software 123 (2017) 223–238

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Test coverage of impacted code elements for detecting refactoring

faults: An exploratory study

Everton L.G. Alves ∗, Tiago Massoni , Patrícia Duarte de Lima Machado

Federal University of Campina Grande, Rua Aprigio Veloso, 882, Bairro Universitário, Campina Grande, PB, Brazil

a r t i c l e i n f o

Article history:

Received 30 November 2014

Revised 5 January 2016

Accepted 1 February 2016

Available online 11 February 2016

Keywords:

Testing

Refactoring

Coverage

a b s t r a c t

Refactoring validation by testing is critical for quality in agile development. However, this activity may

be misleading when a test suite is insufficiently robust for revealing faults. Particularly, refactoring faults

can be tricky and difficult to detect. Coverage analysis is a standard practice to evaluate fault detection

capability of test suites. However, there is usually a low correlation between coverage and fault detec-

tion. In this paper, we present an exploratory study on the use of coverage data of mostly impacted code

elements to identify shortcomings in a test suite. We consider three real open source projects and their

original test suites. The results show that a test suite not directly calling the refactored method and/or

its callers increases the chance of missing the fault. Additional analysis of branch coverage on test cases

shows that there are higher chances of detecting a refactoring fault when branch coverage is high. These

results give evidence that a combination of impact analysis with branch coverage could be highly effec-

tive in detecting faults introduced by refactoring edits. Furthermore, we propose a statistic model that

evidences the correlation of coverage over certain code elements and the suite’s capability of revealing

refactoring faults.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Refactoring improves quality factors of a program while preserv-

ing its external behavior (Fowler et al., 1999; Mens and Tourwé,

2004). Refactoring edits are one of the foundations of agile soft-

ware development. In the agile community, the refactoring activity

is known to confine the complexity of a source code, improving

non-functional aspects of a software such as decreased coupling

and increased cohesion (Moser et al., 2008). Fowler et al. (1999)

lists four advantages that refactoring brings in the context of Agile

Methods: (i) it helps developers to program faster; (ii) it improves

the design of the software; (iii) it makes software easier to under-

stand; and (iv) it helps developers to find bugs.

Recent studies have evidenced that nearly 30% of the changes

performed during software development are likely to be refactor-

ings (Soares et al., 2011). For example, code clones spread through-

out several methods of a class can be unified into a single method,

then replacing the clones by a call to this new method; this is the

Extract Method refactoring (Fowler et al., 1999), which is one of

the most widely applied (Murphy et al., 2006).

∗ Corresponding author. Tel.: +55 83 3310 1122.

E-mail addresses: everton@copin.ufcg.edu.br (E.L.G. Alves), tiago@

computacao.ufcg.edu.br (T. Massoni), patricia@computacao.ufcg.edu.br (P.D.d.L.

Machado).

Although there are several automatic refactoring tools in pop-

ular IDEs, developers still perform most refactorings manually.

Murphy et al. (2006) find that about 90% of refactoring edits

are manually applied. Negara et al. (2013) agree by showing that

expert developers prefer manual refactorings over automated. Us-

ability issues seem to have a negative impact on developers’ con-

fidence on those tools (Lee et al., 2013). Moreover, recent works

show that incorrect refactorings – unexpectedly changing behav-

ior – are present even in the most used tools (Daniel et al., 2007;

Soares et al., 2013).

In such scenario, developers widely use regression test suites for

validating manually-applied refactoring edits. As such, refactoring

edits are error prone and require validation, as subtle faults may

pass unnoticed. Dig and Johnson (2005) state that nearly 80% of

the changes that break client applications are API-level refactor-

ing edits. In addition, 77% of the participants from Kim et al.’s

survey with Microsoft developers (Kim et al., 2012) confirm that

refactoring may induce the introduction of subtle bugs and func-

tionality regression. A regression test suite, however, may be inef-

fective in finding refactoring faults. Also, it may be impractical to

rerun and analyze the execution results of the whole test suite af-

ter each refactoring edit. Techniques that minimize the test suite,

while maintaining its effectiveness, are desirable.

Nevertheless, this intuition has little scientific evidence; it is

important to distinguish which impacted methods, if called by the

http://dx.doi.org/10.1016/j.jss.2016.02.001

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.001&domain=pdf
mailto:everton@copin.ufcg.edu.br
mailto:tiago@computacao.ufcg.edu.br
mailto:patricia@computacao.ufcg.edu.br
http://dx.doi.org/10.1016/j.jss.2016.02.001

224 E.L.G. Alves et al. / The Journal of Systems and Software 123 (2017) 223–238

test suite, are most effective in detecting faults that might be led

to by refactoring. In this paper, we present an exploratory study,

performed on three real open-source Java projects, with seeded

faults related to two of the most common refactoring edits, Extract

Method and Move Method. Using the actual test suites from the

selected projects, we measure the direct calls (first-level coverage)

to several groups of methods possibly impacted by a refactoring

edit, relating these data to the status of the test case – whether it

detects or not the seeded fault.

Overall, only 67% of the seeded 270 faults were detected by

the project’s test suite. The lack of test cases calling the method

whose body is changed seem to be very relevant – 70% of the un-

revealed faults present this property. Similarly, 51% of the unde-

tected faults are missed by test cases that directly call the callers

of the changed method. On the other hand, for 78% of the detected

faults, the test suite included at least one test case that calls the

refactored method directly. Considering callers, this rate was also

high (70%). In 62% of these suites there were test cases that cover,

at first level, both the refactored method and its callers. The detec-

tion results did not present statistical dependence with the type

of refactoring (same with the type of seeded fault). Based on our

results, we propose a statistical model that uses first-level cover-

age data to foresee chances a test suite has to detect refactoring

faults.

First-level coverage reports on a direct need for the agile de-

veloper – identify the calls that must be made in a test case for

improving its chance of detecting refactoring faults. On the other

hand, indirect coverage of impacted elements may not be appli-

cable in a agile context. The reason is that it can be tricky and

demand high costs for a developer to assess fault detection ca-

pability in indirect calls. For instance, after applying an Extract

Method, it seems intuitive that tests directly calling the changed

method, its callers, and callees present good chances of detecting

any newly-introduced fault. When considering first-level coverage,

we are also focusing on test case expressiveness regarding refac-

toring edits. When a test case that calls directly a method fails, it

may be more helpful to locate the fault.

Considering that several faults were missed by test cases even

with first-level coverage of impacted methods, we additionally an-

alyzed test cases that exercise the modified method and their

callers. If at least one test case in the suite called the changed

method, and the branch coverage of this method was greater than

75%, 91% of the faults were detected. If callers of the changed

method were directly accessed, in 88% of the cases, the faults were

detected with high branch coverage. For suites with low branch

coverage (less than 25%), detection dropped to 66% and 62%, re-

spectively. These results provide a good case for tests with direct

calls combined with high branch coverage.

As another additional study, we explored the relationship be-

tween first-level coverage of impacted elements and binding is-

sues with refactored variables within class hierarchies. Previous

research (Soares et al., 2011) reported on several subtle faults in

manual and automated refactoring being due to homonymous vari-

ables or methods being confused by refactored statements, so we

extended our investigation for relating test cases with this kind of

refactoring fault. Similarly to the other studies, this investigation

showed that when a test suite covers the refactored method and

its callers better are the chances of detecting binding-related faults

introduced when refactoring.

We published a preliminary version of this study (Alves et al.,

2014a) in which a single refactoring type and refactoring fault are

analyzed. The current paper extends our previous study by inves-

tigating new refactoring types, new refactoring faults, by adding

statistical validation to the conclusions, and by proposing new ar-

tifacts to help the evaluation of a test suite regarding its detection

of refactoring faults.

Section 2 brings a motivating example for the problem of

test cases that miss refactoring bugs. Next, we present the setup

and research questions investigated by the experimental studies

(Section 3), then Section 4 includes the results and discussion for

the main experimental study. In Section 5 , we extend the study to

relate its results with branch coverage within the exercised meth-

ods, while Section 6 presents an exploratory study for binding-

related refactoring faults. Section 7 discusses threats to validity.

The last two sections cover the related work and concluding re-

marks, respectively.

2. Motivating example

In agile methodologies, even simple solutions may need im-

provement when requirement changes must be incorporated into

the code base, so manual refactoring is frequent. Automation of

refactoring is common, but here we focus on manual refactoring.

Opportunities for code improvement often involve code dupli-

cation, and its minimization or elimination is often desirable. For

this task, the Extract Method refactoring (Fowler et al., 1999) en-

compasses small changes that group together multiple code frag-

ments into a new method; the new method has a name explaining

its purpose, and the original fragments are then replaced by a call

to this method. When applying this edit, developers must be cau-

tious: the new method must receive parameters that correspond

to the variables manipulated by the grouped fragment, and a re-

turn value must be correctly provided to the callers; also, the new

method could be changing the behavior of the target class.

Suppose that, after working on several tasks, a developer no-

tices an opportunity of reducing code duplication. Fig. 1 presents

two fragments of her code before and after the Extract Method

refactoring; Lines 5–8 from Elementm(boolean) – Fig. 1 (a) –

are extracted into the n method in Fig. 1 (b). Following princi-

ples for validating refactorings, and assuming that her test suite

passes before and after the edits, also, no compilation error was

found. Thus, she may become confident that the modification is

correct, and commits the code to the code base. The behavior , how-

ever, is undesirably modified. If b is true, x finishes with value 23 ,

x is updated before throwing the exception. After extracting the

method, the exception is thrown with the global x with its initial

state 42 .

This example shows a very subtle refactoring fault that may

easily go undetected, especially if the test suite does not exer-

cise the test method. By examining previous research on change

impact analysis (Ren et al., 2004; Zhang et al., 2011; Ryder and

Tip, 2001), we can establish that, for an Extract Method refactor-

ing edit, the methods most likely to be impacted are: (i) the orig-

inal method (M), in this case, the m method; (ii) the callers of the

method under refactoring (C), as methods that call m() might be

negatively influenced in case they use m ’s return value, and/or any

variable handled by m ; (iii) the callees of the method under refactor-

ing (Ce), so if given methods that m calls require as pre-requisite

the program to be in a certain state, then m must be run according

to its previous behavior; and (iv) methods with similar signature to

the newly added one (O). An extracted method may break or intro-

duce overriding/overloading contracts causing a behavior change;

for instance, m could already be declared within Element ’s
hierarchy.

It is expected that, by presenting first-level coverage of the

methods potentially impacted by the refactoring, a test case is ex-

pected to detect such fault – this is an easy to follow guideline

for writing appropriate test cases. Nevertheless, first-level coverage

alone may mislead developers/testers (Inozemtseva and Holmes,

2014). More specifically, with refactoring faults, there is no evi-

dence whether this type of coverage is a good quality measure

in this context, or which methods a test suite should call to

Download English Version:

https://daneshyari.com/en/article/4956617

Download Persian Version:

https://daneshyari.com/article/4956617

Daneshyari.com

https://daneshyari.com/en/article/4956617
https://daneshyari.com/article/4956617
https://daneshyari.com

