
Microprocessors and Microsystems 52 (2017) 145–159 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Functional verification based platform for evaluating fault tolerance 

properties 

Jakub Podivinsky 

∗, Ondrej Cekan , Jakub Lojda , Marcela Zachariasova , Martin Krcma , 
Zdenek Kotasek 

Brno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Bozetechova 2, 612 66 Brno, Czech Republic 

a r t i c l e i n f o 

Article history: 

Received 9 January 2017 

Revised 15 March 2017 

Accepted 4 June 2017 

Keywords: 

Functional verification 

Robot controller 

Electro-mechanical systems 

Fault tolerance 

Maze generation 

a b s t r a c t 

The fundamental topic of this article is the interconnection of simulation-based functional verification, 

which is standardly used for removing design errors from simulated hardware systems, with fault- 

tolerant mechanisms that serve for hardening electro-mechanical FPGA SRAM-based systems against 

faults. For this purpose, an evaluation platform that connects these two approaches was designed and 

tested for one particular casestudy: a robot that moves through a maze (its electronic part is the robot 

controller and the mechanical part is the robot itself). However, in order to make the evaluation platform 

generally applicable for various electro-mechanical systems, several subtopics and sub-problems need 

to solved. For example, the electronic controller can have several representations (hard-coded, proces- 

sor based, neural-network based) and for each option, extendability of verification environment must be 

possible. Furthermore, in order to check complex behavior of verified systems, different verification sce- 

narios must be prepared and this is the role of random generators or effective regression tests scenarios. 

Also, despite the transfer of the controller to the SRAM-based FPGA which was solved together with an 

injection of artificial faults, many more experiments must be done in order to create a sufficient fault- 

tolerant methodology that indicates how a general electronic controller can be hardened against faults 

by different fault-tolerant mechanisms in order to make it reliable enough in the real environment. All 

these additional topics are presented in this article together with some side experiments that led to their 

integration into the evaluation platform. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Digital systems play an important role in our everyday lives. 

They are widely used in industry, medicine and other safety criti- 

cal sectors. Not only the loss of a huge amount of money, but also 

the loss of human lives may occur in case of their failure. The cur- 

rent trend is that the complexity of digital systems is rising, which 

leads to an increased susceptibility to faults. It is possible to spec- 

ify two main sources of faults [1] : 1) Design faults (bugs) are always 

the consequence of an incorrect design, an ambiguous specification 

or misinterpretation of the specification and 2) Hardware/physical 

faults (defects) which arise during manufacturing or system opera- 

tion. 

The approach dealing with design faults is called functional ver- 

ification [2] which currently has an irreplaceable position in the 

∗ Corresponding author. 

E-mail addresses: ipodivinsky@fit.vutbr.cz (J. Podivinsky), icekan@fit.vutbr.cz (O. 

Cekan), ilojda@fit.vutbr.cz (J. Lojda), zachariasova@fit.vutbr.cz (M. Zachariasova), 

ikrcma@fit.vutbr.cz (M. Krcma), kotasek@fit.vutbr.cz (Z. Kotasek). 

development cycle of digital systems. It runs in a simulation (RTL - 

Register-Transfer Level simulators are typically used, like QuestaSim 

from Mentor Graphics or VCS from Synopsys) and uses sophisti- 

cated testbenches which are prepared according to UVM (Univer- 

sal Verification Methodology) [3,4] which ensures scalability and 

re-usability. Functional verification checks whether a hardware sys- 

tem satisfies a given specification. The main purpose is to find as 

many design faults as possible before the system is deployed. The 

main principle of functional verification is to apply a huge num- 

ber of input stimuli to the input ports of the verified circuit (DUT 

- Device Under Test ) and on the input ports of the reference model. 

Afterwards, the behavior of DUT and the reference model is com- 

pared for these stimuli. The reference model is prepared by a ver- 

ification engineer in SystemVerilog, C/C++ or other supported lan- 

guage and implements the reference behavior. 

Coverage is an important metric in verification. It measures 

how well input stimuli cover the behavior of DUT and provides 

feedback that determines when the verification process can be 

ended. Depending on the coverage criterion considered, the follow- 

ing coverage metrics can serve as an example: 

http://dx.doi.org/10.1016/j.micpro.2017.06.004 

0141-9331/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.06.004&domain=pdf
mailto:ipodivinsky@fit.vutbr.cz
mailto:icekan@fit.vutbr.cz
mailto:ilojda@fit.vutbr.cz
mailto:zachariasova@fit.vutbr.cz
mailto:ikrcma@fit.vutbr.cz
mailto:kotasek@fit.vutbr.cz
http://dx.doi.org/10.1016/j.micpro.2017.06.004


146 J. Podivinsky et al. / Microprocessors and Microsystems 52 (2017) 145–159 

• Code coverage measures how well input stimuli cover the source 

code of DUT. Typical code coverage metrics are toggle, state- 

ment, branch, condition, expression or FSM coverage. 

• Functional coverage measures how well input stimuli cover the 

functional specification of DUT. The user defines the coverage 

points for the functions to be covered in a verified circuit, e.g.: 

Did the verification test cover all possible commands or did the 

simulation trigger a buffer overflow? 

Moreover, standard languages, methodologies and libraries were 

defined for functional verification. The most commonly known 

ones are the SystemVerilog IEEE language standard [5] , Universal 

Verification Methodology and the open-source UVM library (with 

all the basic components of verification environments). 

Of course, UVM-based functional verification does not guaran- 

tee 100% correctness of the system as formal verification does. The 

reason is that formal verification is based on an exhaustive explo- 

ration of the state space of DUT, hence it is potentially able to 

formally prove its correctness. However, the main disadvantage of 

this method is a state space explosion for real-world systems and 

the need to provide formal specifications of the behavior of the 

system which makes this method often hard to use. On the other 

hand, UVM-based functional verification is much easier to use and 

aims at covering properties determined by the specification, not 

the whole state space. Nevertheless, if these properties are selected 

accurately, all key aspects of the system are properly verified. 

The approaches which deal with hardware/physical faults are 

techniques called Fault avoidance or Fault tolerance [6] . Fault avoid- 

ance is mainly obtained by the use of radiation hardened technolo- 

gies, improved design of storage elements or asynchronous circuits. 

Fault tolerance is the ability of a system to continue performing its 

correct function even in the presence of unexpected faults. Many 

fault-tolerant methodologies have been developed inclined, among 

others, to Field Programmable Gate Arrays (FPGAs) and new ones are 

under investigation [7] , because FPGAs are becoming more popu- 

lar due to their flexibility and reconfigurability. The second reason 

why so many techniques are inclined to FPGAs is their sensitivity 

to faults and ability to be reconfigured in the case of fault occur- 

rence. FPGAs are composed of configurable logic blocks [8] which 

are connected by programmable interconnections. The configura- 

tion is stored as a bitstream in SRAM memory. The problem is that 

FPGAs are quite sensitive to faults caused by charged particles [9] . 

This particle can induce an inversion of a bit in the bitstream and 

this may lead to a change in its behaviour. This event is called Sin- 

gle Event Upset (SEU). 

It is important to test and evaluate these techniques. Various 

approaches to the evaluation of fault tolerance exist and some of 

them are performed on a theoretical level, for example, a simula- 

tion method for SEU emulation is presented in [10] . Another ap- 

proach is in the use of fault injection directly into the design im- 

plemented in FPGA. Special evaluation boards are developed for 

these purposes, one of them is presented in [11] or [12] . 

The systems implemented as fault-tolerant very often consist 

of two parts - an electronic one and a mechanical one. The me- 

chanical part is controlled by its electronic controller. It can be 

stated that such areas exist in which electro-mechanical appli- 

cations are implemented as fault-tolerant - aerospace and space 

applications can serve as an example. Until now, our work was 

dedicated to verification of fault-tolerant qualities that allow us 

to check just the resilience of electronic components. However, 

for electro-mechanical systems, the approach must be different. It 

must be possible to check what are the reactions of the mechani- 

cal component if the functionality of its electronic controller is cor- 

rupted by external attacks. 

This paper is organized as follows. The goals of our research 

are described in Section 2 . Section 3 introduces three phases of 

the evaluation process based on our platform. We focus on in- 

troducing every phase theoretically and at the same time, we 

elaborate on making the platform general for various electro- 

mechanical systems. The first phase is mentioned in Section 4 to- 

gether with verification environment architecture. Different possi- 

bilities for implementing the electronic controller (DUT) are men- 

tioned in Section 5 . This can be considered as the first step to 

generalization. The second step is preparing various verification 

scenarios for different DUTs and this process is summarized in 

Section 6 . FPGA-based verification environment which is needed 

for the second phase is presented in Section 7 . Principles which 

are used for checking reactions of the mechanical part in the 

third phase are introduced in Section 8 . For the demonstration 

of our evaluation platform we created a case-study presented in 

Section 9 which is supplemented by experiments and their results 

in Section 10 . Section 11 summarizes the results and proposes our 

plans for future research. 

2. Goals of the research 

Based on our previous analysis of actual research in the area of 

fault tolerance methodologies and their evaluation, we have identi- 

fied the main goals that we would like to focus on in our research 

of fault-tolerant FPGA-based systems. 

• The first point is to develop an evaluation platform based on 

FPGA technology for testing fault tolerance techniques . The ba- 

sic concepts and the first version of the evaluation platform 

were presented in our previous work [13] . Based on experi- 

ments with our platform we realized the necessity to automate 

the process of a fault impact evaluation. We found functional 

verification as an appropriate technique for this purpose. 

• The important task is to propose the process describing the use 

of the developed evaluation platform for fault tolerance properties 

improvement in general electro-mechanical systems. It means 

that our evaluation platform will be supplemented with a de- 

scription on how to configure the environment for the selected 

experimental system, especially how to evaluate fault tolerance 

properties and search for the possibilities of its improvement. 

• As was mentioned above, we need to take into account the me- 

chanical part which is usually driven by an electronic controller 

in real systems. Therefore, the verification environment should 

take into account also the operation of the mechanical part 

when evaluating the correctness of operations. 

The following sections describe our progress in achieving these 

goals. Firstly, the basic concept of the evaluation process is de- 

scribed and is divided into three phases. Each of these phases 

needs a specific verification environment with a specific config- 

uration, so the evaluation platform is described on a theoretical 

level for every phase separately. The evaluation platform is demon- 

strated on one case-study: a robot searching a path through a 

maze and its electronic controller. 

3. Basic concept of the evaluation process 

The proposed process of the fault impact evaluation, which is 

shown in Fig. 1 , is divided into three phases. In the first phase, we 

use the simulation-based functional verification where the VHDL 

description of the electronic controller is used as the DUT. In this 

phase, the correctness of the electronic controller design is evalu- 

ated. The main output of the first phase is a test on whether the 

electronic controller works correctly according to the specification. 

It is important because we have to ensure that the electronic con- 

troller does not contain any functional errors in the implementa- 

tion. It is also important to point out that in this phase we acquire 



Download English Version:

https://daneshyari.com/en/article/4956642

Download Persian Version:

https://daneshyari.com/article/4956642

Daneshyari.com

https://daneshyari.com/en/article/4956642
https://daneshyari.com/article/4956642
https://daneshyari.com

