
Microprocessors and Microsystems 52 (2017) 312–324

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Reliability-aware low energy scheduling in real time systems with

shared resources

Yi-wen Zhang

∗, Hui-zhen Zhang, Cheng Wang

College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China

a r t i c l e i n f o

Article history:

Received 30 October 2016

Revised 7 April 2017

Accepted 30 June 2017

Available online 4 July 2017

Keywords:

Real-time systems

Dynamic voltage scaling

Real-time scheduling

Shared resources

a b s t r a c t

Dynamic voltage scaling (DVS) is a technique which is widely used to save energy in a real time sys-

tem. Recent research shows that it has a negative impact on the system reliability. In this paper, we

consider the problem of the system reliability and focus on a periodic task set that the task instance

shares resources. Firstly, we present a static low power scheduling algorithm for periodic tasks with

shared resources called SLPSR which ignores the system reliability. Secondly, we prove that the prob-

lem of the reliability-aware low power scheduling for periodic tasks with shared resources is NP-hard

and present two heuristic algorithms called SPF and LPF respectively. Finally, we present a dynamic low

power scheduling algorithm for periodic tasks with shared resources called DLPSR to reclaim the dy-

namic slack time to save energy while preserving the system reliability. Experimental results show that

the presented algorithm can reduce the energy consumption while improving the system reliability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Energy management is an important in an embedded real-time

system, especially for PDA and cell phones. Low energy consump-

tion can reduce the cost of cooling and extend the lifetime of the

battery. Dynamic voltage scaling (DVS) which uses the slack time

to adjust the processor speed is a simple and effective technique

to decrease the energy consumption [1] .

There are many researches that focus on the energy manage-

ment while all tasks will meet their deadlines in different real-

time task models [2–6] . But these researches only take the en-

ergy consumption into consideration and ignore the system relia-

bility. In order to improve the system reliability, many researchers

[7–9] have studied the method of minimizing energy consump-

tion while improving the system reliability. These researches use

the checkpoint technique to improve the system reliability and ig-

nore that the processor speed has effected on the system relia-

bility. Zhu et al [10] show that the DVS technique has a negative

impact on the system reliability i.e. it can increase transient fault

rates at low supply voltage and frequency. As a result, the appli-

cation of the DVS technique must be carefully, especially for the

mission-critical real-time embedded applications. For this reason,

a number of recent research articles focus on the system reliability

while taking the energy consumption into consideration and pro-

mote the so-called reliability-aware power management (RA-PM)

∗ Corresponding author.

E-mail address: zyw@hqu.edu.cn (Y.-w. Zhang).

framework [11–16] . Zhu and Aydin [11] have first proposed RA-

PM framework that minimizing the energy consumption while pre-

serving the system reliability. Furthermore, Zhu [12] has extended

the work in [11] and proposed schemes that can use the dynamic

slack time to dynamically schedule an additional recovery task to

recuperate the reliability loss while considering the energy con-

sumption. In addition, Zhu and Aydin [13] have proved that a static

RA-PM framework for periodic real time tasks is NP-hard and pro-

posed two task-level utilization-based heuristics. Moreover, Zhao et

al. [15] have proposed a more efficient shared recovery technique

called SHR. The SHR can achieve more energy savings while pre-

serving the system reliability.

The above researches assume that there are no dependencies

between the tasks composing the considered task set. Sha et al.

[17] have studied the priority inversion problem and proposed

two priority inheritance protocols i.e. the basic priority inheri-

tance protocol and the priority ceiling protocols. Jeffay [18] has

proposed a new scheduling scheme called EDF/DDM to solve the

problem of scheduling the sporadic tasks with shared resources.

These researches don’t take the energy consumption into consider-

ation. Moreover, Horng et al. [19] have proposed a new technique

that extends the work in [18] and considers the energy consump-

tion while meeting task’s deadlines. But this technique ignores the

static power and assumes that each task instance with its worst

case execution time. Furthermore, Zhang and Guo [5] have ex-

tended the work in [19] and proposed a more efficient algorithm,

called DSTSASR. It can reclaim the dynamic slack time to save

energy and take the general power model into consideration. In

http://dx.doi.org/10.1016/j.micpro.2017.06.020

0141-9331/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2017.06.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.06.020&domain=pdf
mailto:zyw@hqu.edu.cn
http://dx.doi.org/10.1016/j.micpro.2017.06.020

Y.-w. Zhang et al. / Microprocessors and Microsystems 52 (2017) 312–324 313

addition, it combines the DVS with dynamic power management

(DPM).

In this paper, we focus on the reliability-aware energy man-

agement for a periodic real time task set with shared resources.

Firstly, we present a static low power scheduling algorithm for

periodic tasks with shared resources called SLPSR which ignores

the system reliability. Secondly, we prove that the problem of

the reliability-aware low power scheduling for periodic tasks with

shared resources is NP-hard and present two heuristic algorithms

called SPF and LPF respectively. Finally, we present a dynamic

low power scheduling algorithm for periodic tasks with shared re-

sources called DLPSR to reclaim the dynamic slack time to save

energy while preserving system reliability.

The remainder of the paper is organized as follows: the model

and problem descriptions are presented in Section 2 . A static

solution for reliability-aware low power scheduling is presented

in Section 3 . In Section 4 , we present a dynamic solution for

reliability-aware low power scheduling. The simulation results and

discussions are presented in Section 5 and conclusions are pre-

sented in Section 6 .

2. Models and problem description

2.1. Processor and task model

In this paper, we assume that the DVS-enabled processor can

provide a continuous speed, that is, the processor can be operated

from the minimum processor speed S min to the maximum proces-

sor speed S max . For simplicity, the speeds are normalized with re-

spect to S max , i.e. S max = 1 . This assumption is reasonable, because

the discrete speed levels can be solved by the method of two adja-

cent speeds [2] or the next available higher speed. In addition, we

ignore the speed transition overheads.

We focus on the real time system in an uni-processor that con-

sists of the periodic task set T and a serially reusable resource

set R . The periodic task set T has n periodic tasks, represented as

T = { T 1 , T 2 , · · · , T n } and the reusable resource set R has m reusable

resources, represented as R = { R 1 , R 2 , · · · , R m

} . According to [18] ,

the resource is a software object, e.g. a data structure. It must be

accessed in a mutually exclusive manner. A periodic task T i can be

described by (e i , r i , p i), where e i is the worst case execution time

(WCET) of T i under the maximum processor S max . r i is the resource

requirement of the task T i and it can be represented by an inte-

ger (1 ≤ r i ≤ m). If r i � = 0, the task T i has a resource requirement

and other tasks which access to the resource R r i will be blocked. If

r i = 0 , the T i is a task without resource requirement. p i is the pe-

riod of T i . In addition, we assume that the relative deadline of T i is

equal to its period and that the task should access at most one re-

source at a time. We arrange the period of T i in the non-decreasing

order, i.e. p 1 ≤ p 2 ≤ ��� ≤ p n . Let T i, j be the j th instance of the task

T i and rt i, j be the release time of the task T i . We denote u i as the

utilization of the task T i and it can be expressed by u i = e i / p i . The

system utilization U tot can be expressed by U tot =

n ∑

i =1

u i and we as-

sume that U tot < 1. Furthermore, we assume that the WCET of T i
scales linearly with the processor speed, i.e. the WCET of T i is equal

to e i · S max / S i with the processor speed S i .

The periodic task set T is scheduled by the EDF/DDM policy

[18] . The EDF/DDM policy is based on the earliest deadline first

(EDF) policy. Note that when the deadline is the same, the early

released task has a higher priority and that both deadlines and

the released time are the same, the lower index task has a higher

priority. There are two kinds of deadlines for each task instance

T i, j in the EDF/DDM policy. One is the initial deadline (ID i, j), the

other is the execution deadline (ED i, j) which is determined by

the time that T i, j begins to execute. Let P i be the shortest pe-

riod of the task that needs a resource R i . It can be expressed by

P i = min

1 ≤ j≤n
{ p j | r j = i } . In addition, let t i, j be the commences execu-

tion time of the task instance T i, j . The initial deadline is equal to

the execution deadline for the task without resource requirements.

As for the task instance T i, j with resource requirement, the initial

deadline ID i, j is equal to r t i, j + p i and the execution deadline ED i, j

is equal to min { r t i, j + p i , � t i, j � + 1 + P i } [15] .

2.2. Energy model

In this paper, we adopt a simple and general system-level

power model. It is first proposed in [10] and then used in [3–5] .

Therefore, the power P is given by:

P = P s + h (P ind + P dep) = P s + h (P ind + C e f S
m) (1)

Here, P s is static power which maintains basic circuits and

keeps the clock running. It can be treated as 0 by turning off the

system. P ind is a speed-independent power and can be treated as

0 when the processor is in idle status. P dep is a speed-dependent

power and can be expressed by P dep = C e f · S m . Here, C ef stands for

effective switching capacitance, m stands for system dependent

constants (2 ≤ m ≤ 3) and S stands for the running speed of the

processor. In addition, h stands for a constant coefficient. If the

processor is in idle status, h = 0 ; else, h = 1 .

For energy efficiency, the critical speed S crit is proposed in

[5,11] , which is a minimum energy-efficient speed and it can be ex-

pressed by S crit =

m

√

P ind
C e f ·(m −1)

. Therefore, all tasks will execute with

the speed larger or equal to S crit .

2.3. Fault and reliability models

There are both permanent and transient faults that occur during

the task execution in the embedded real time systems. According

to [11,12,20,21] , the transient faults occur much more frequently

than permanent faults, especially with the continued scaling of

CMOS technologies and reduced design margins. Therefore, we fo-

cus on the transient faults and use the re-execution task or time-

redundancy method to eliminate the effect of transient faults. In

addition, we assume that transient faults can be detected by con-

sistency checks or sanity [22] at the end of task’s execution and as-

sume that the overhead of the detection can be incorporated into

WCET of the task.

We adopt the fault arrival rate model in [11,13,14] . It can be ex-

pressed as following:

λ(S) = λ0 g(S) (2)

Where λ0 is the average fault rate under the maximum proces-

sor speed S max , g(S max) = 1 and S is the running speed of the pro-

cessor. Furthermore, we use the same exponential fault rate model

as given in [11] , g (S) can be expressed as following:

g(S) = 10

d(1 −S)
1 −S min (3)

Where d is a system constant (d > 0). From this model, we find

that the lower processor speed, the higher fault arrival rate.

The reliability of a task is defined as the probability of the task

which completes its execution successfully. According to [12,14 , 15],

the reliability of a task T i with its WCET under the running speed

S i can be expressed as following:

R i (S i) = e
−λ(S i) ∗ e i

S i (4)

Where λ(S i) is given in the Eq. (2) . Moreover, the original re-

liability of a task T i (R 0
i
) is defined as the task executes with

the maximum processor speed S max and it can be expressed by

R 0
i

= R i (S max) = e −λ0 ·e i . As a result, the system original reliability

of the periodic task set T is given by
n ∏

i

R 0
i
.

Download English Version:

https://daneshyari.com/en/article/4956655

Download Persian Version:

https://daneshyari.com/article/4956655

Daneshyari.com

https://daneshyari.com/en/article/4956655
https://daneshyari.com/article/4956655
https://daneshyari.com

