
Microprocessors and Microsystems 52 (2017) 439–460 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Worst-case performance analysis of SDF-based parameterized 

dataflow 

� 

Mladen Skelin 

a , b , ∗, Marc Geilen 

b , Francky Catthoor c , Sverre Hendseth 

a 

a Norwegian University of Science and Technology, 7491 Trondheim, Norway 
b Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands 
c IMEC vzw, 3001 Leuven, Belgium 

a r t i c l e i n f o 

Article history: 

Received 26 December 2015 

Revised 26 October 2016 

Accepted 7 December 2016 

Available online 12 December 2016 

Keywords: 

Parameterized dataflow 

Synchronous dataflow 

SDF -based parameterized dataflow 

Max-plus algebra 

Worst-case performance 

a b s t r a c t 

Dynamic dataflow models of computation (MoCs) have been introduced to provide designers with suffi- 

cient expressive power to capture increasing levels of dynamism in present-day streaming applications. 

Among dynamic dataflow MoCs, parameterized dataflow MoCs hold an important place. This is due to 

the fact that they allow for a compact representation of fine-grained data-dependent dynamics inherent 

to many present-day streaming applications. 

However, these models have been primarily analyzed for functional behavior and correctness, while the 

(parametric) analysis of their temporal behavior has attracted less attention. 

In this work, we (in a parametric fashion) analyze worst-case performance metrics (throughput and la- 

tency) of an important class of parameterized dataflow MoCs based on synchronous dataflow (SDF). We 

refer to such models as SDF-based parameterized dataflow (SDF-PDF). We show that parametric analysis 

in many cases allows to derive tighter conservative worst-case throughput and latency guarantees than 

the existing (nonparametric) techniques that rely on the creation of “worst-case SDF abstractions” of orig- 

inal parameterized specifications. Furthermore, we discuss how by using parametric analysis we can help 

address the scalability issues of enumerative analysis techniques. 

To achieve this, we first introduce the Max-plus algebraic semantics of SDF-PDF. Thereafter, we model 

run-time adaptation of parameters using the theory of Max-plus automata. Finally, we show how to de- 

rive the worst-case performance metrics from the resulting Max-plus automaton structure. 

We evaluate our approach on a representative case study from the multimedia domain. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Dataflow models of computation (MoCs) have proven their 

value in modeling of streaming applications. Dataflow MoCs are 

instantiated as dataflow graphs. In such graphs, nodes are called 

actors while edges are called channels . Actors represent computa- 

tional kernels, while channels capture the flow of streams of data 

values between actors. These data values are called tokens . The es- 

sential property of dataflow is that of an actor firing . Simply put, 

actor firing denotes the execution of an actor. Actor firing is an 

atomic action during which the actor consumes a certain num- 

ber of tokens from input channels through its input ports, executes 

� Manuscript received December 26, 2015; revised October 26, 2016; accepted De- 

cember 7, 2016. This work was partly supported by ITEA 3 project 14014 ASSUME. 
∗ Corresponding author. 

E-mail address: m.skelin@tue.nl (M. Skelin). 

some behavior and produces a certain number of tokens at its out- 

put ports that are put on its output channels [1] . These token pro- 

duction and consumption numbers are called actor port rates . Ac- 

tors fire according to a set of firing rules which specify what and 

how many tokens must be available at input ports for the firing 

to be enabled. In presence of feedback loops, actors in the loop 

would never become enabled because they depend on each other 

for tokens. This would lead the graph to a deadlock. Therefore, ini- 

tial tokens must be placed on feedback channels. In timed dataflow 

under consideration in this paper, actor firing takes a finite amount 

of time called the actor firing delay . Furthermore, port rates are 

viewed as part of the actor type signature along with the type of 

the tokens [2,3] . Port rates can be used to define a graph iteration , 

or a set of actor firings that has no net-effect on the token distri- 

bution of the graph. 

Dataflow MoCs have been traditionally divided into two classes: 

static dataflow MoCs [4] and dynamic dataflow MoCs [5] . 

http://dx.doi.org/10.1016/j.micpro.2016.12.004 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.12.004&domain=pdf
mailto:m.skelin@tue.nl
http://dx.doi.org/10.1016/j.micpro.2016.12.004


440 M. Skelin et al. / Microprocessors and Microsystems 52 (2017) 439–460 

Static dataflow MoCs are in wide use due to their predictability, 

strong formal properties and amenability to powerful optimization 

techniques [5] . 

Most well-known representatives of static dataflow are syn- 

chronous dataflow (SDF) [6] and cyclo -static dataflow (CSDF) [7] . In 

SDF, actor type signatures are fixed and known at compile-time. In 

CSDF, actor type signatures can vary between actor firings as long 

as the variation complies to a certain type of a periodic pattern. 

Static dataflow MoCs owe their “nice” properties to their re- 

stricted semantics. This restricted semantics, however, makes them 

an inadequate tool choice for capturing the dynamic behavior in- 

herent to present-day streaming applications. The need for expres- 

sive power beyond that offered by static dataflow MoCs brings us 

to the class of dataflow MoCs we call dynamic dataflow MoCs. Dy- 

namic dataflow MoCs can be viewed as dataflow formalisms in 

which actor type signatures (port rates) and actor firing delays for 

timed models vary in ways not entirely predictable at compile- 

time [5] . 

In relation to the concept used to represent the dataflow 

dynamics, the work of [5] defines two subclasses of dynamic 

dataflow MoCs. First subclass refers to dataflow MoCs that are de- 

veloped around an interacting combination of finite-state machines 

(FSM) and dataflow graphs. Models such as FSM -based scenario- 

aware dataflow (FSM-SADF) [8] and heterochronous dataflow 

(HDF) [2] are well-known examples of such FSM /dataflow hybrids 

where an FSM is used to decouple control from concurrency. 

In HDF, each FSM state is mode-refined by a submodel, where 

each refinement has different actor port rates. In FSM-SADF, each 

FSM state is associated with an SDF model of a scenario the state 

corresponds to. This has the effect that across FSM-SADF iterations 

actors operate in different modes or scenarios . In different scenar- 

ios, actors have different firing delays and port rates. 

In the second subclass, a member of which we focus in this pa- 

per, dataflow dynamics are represented by alternative means. This 

is advantageous for the users of design tools that are accustomed 

to working in the dataflow domain and for which the FSM integra- 

tion may represent an experimental concept [9] . 

Examples of such models are Boolean dataflow (BDF) [10] , dy- 

namic dataflow (DDF) [10] and parameterized dataflow [5] . 

In this paper, we are interested in parameterized dataflow as a 

meta-modeling technique that integrates parameters and run-time 

adaptation of parameters into a certain class of dataflow MoCs we 

refer to as base models [5] . This way, using parameters, one is able 

to express fine-grained data-dependent dynamics of present-day 

streaming applications in a compact way. In particular, we are in- 

terested in parameterized dataflow MoCs where SDF serves as the 

base model. Such models are of special importance, as SDF is con- 

sidered the most stable and mature dataflow MoC. 

Examples are parameterized SDF (PSDF) [9] , schedulable 

parametric dataflow (SPDF) [11] , Boolean parametric dataflow 

(BPDF) [12] and variable rate dataflow (VRDF) [13] . 

We refer to such models, obtained by parameterization of SDF 

(in terms of rates and actor firing delays in the timed dataflow 

context) as SDF -based parameterized dataflow (SDF-PDF). Al- 

though such models have been parametrically analyzed for func- 

tional behavior and correctness, the parametric analysis of their 

temporal behavior, in particular analysis of their performance met- 

rics such as throughput and latency, has received far less attention. 

However, there are remedies to this. In certain cases it is possible 

to create a “worst-case SDF abstraction” of the original parame- 

terized specification that can be subjected to standard SDF perfor- 

mance analysis techniques [14,15] . The information needed to con- 

struct such “worst-case SDF abstraction” would include the upper 

endpoints of parameterized actor firing delays assuming that these 

are initially box constrained. The validity of such an abstraction fol- 

lows from the monotonicity property of SDF [16] that SDF-PDF in- 

herits. 

However, using upper endpoints of firing delay parameters will 

often incur significant amounts of pessimism. E.g., if actors are im- 

plemented in software their firing delays correspond to worst-case 

execution times (WCETs) of associated software modules. It is of- 

ten the case that these WCETs depend on the module inputs in 

very complex ways. Paper [17] lists a few examples of applications 

where WCETs are expressed as polynomial functions of application 

inputs. Therefore, taking the upper endpoints of default parameter 

intervals and not considering these dependencies will most defi- 

nitely incur a significant amount of pessimism which results in a 

decrease of the optimization margin a designer has at hers/his dis- 

posal. 

The case of graphs containing parameterized rates is even more 

complicated, as these necessarily do not influence the temporal be- 

havior of the model in a monotonic way. In particular, an increase 

in rate value can lead to a decrease in the duration of graph itera- 

tion. Things get even worse if these rates show functional depen- 

dence on characteristics of the input signal. 

A solution to this problem is enumeration, where one would 

consider all possible parameter value combinations. However, the 

run-time of enumerative analysis will in many cases in practice be 

prohibitive due to large spans of values the parameters can attain 

(compactness issues). 

The aforementioned justifies the need for novel worst-case 

parametric performance analysis techniques that by operating di- 

rectly on graph parameters remove the need for the touchy 

construction process of “worst-case SDF abstractions” of orig- 

inal parameterized specifications. Furthermore, we require that 

the parametric analysis can account for complex parameter inter- 

dependencies, and so avoid the pessimism the analysis based on 

“worst-case SDF abstraction” suffers from because it disregards 

these inter-dependencies and considers only the upper parame- 

ter interval endpoints. Finally, by working directly with parameters 

we remove the need for successive analysis of all parameter value 

combinations and so we help address the scalability problems the 

enumerative analysis is prone to. 

In this work we present such a worst-case performance analy- 

sis framework for SDF-PDF specifications in consideration of cer- 

tain technical constraints we impose on the input graph struc- 

tures. Within the framework, we consider self-timed execution of 

SDF-PDF structures. Self-timed execution is a schedule where ev- 

ery actor fires as soon as possible. The self-timed execution is of 

special importance as it defines the tightest bound that can be 

given on the temporal behavior of the system captured by an SDF 

/SDF-PDF model [16] . We base our approach on the Max-plus alge- 

braic [18] semantics of self-timed execution of SDF that SDF-PDF 

inherits. We model parameter reconfigurations using the theory 

of Max-plus automata [19] by exploiting the Max-plus semantic 

equivalence of SDF-PDF parameter reconfigurations and scenario 

transitions in FSM-SADF. By subjecting the derived Max-plus au- 

tomaton structure to appropriate analysis, we are able to derive the 

relevant worst-case throughput and latency metrics for SDF-PDF. 

The remainder of this paper is structured as follows. In 

Section 2 we illustrate the importance of parameterized dataflow 

MoCs for modeling applications exposing fine-grained data- 

dependent dynamics and we outline the performance analysis 

challenges for such specifications. Section 3 discusses the related 

work. Section 4 presents preliminary concepts. Section 5 formally 

defines SDF-PDF followed by Section 6 that develops its Max- 

plus semantics. Section 7 formally defines the performance metrics 

of interest and Section 8 presents techniques for computation of 

those metrics. Section 9 demonstrates the application of our tech- 

niques on a realistic-case study from the multimedia domain. Fi- 

nally, Section 10 concludes. 



Download English Version:

https://daneshyari.com/en/article/4956668

Download Persian Version:

https://daneshyari.com/article/4956668

Daneshyari.com

https://daneshyari.com/en/article/4956668
https://daneshyari.com/article/4956668
https://daneshyari.com

