Microprocessors and Microsystems 52 (2017) 439-460

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

Microprocessors and Microsystems

EMBEDDED
HARDWARE
DESIGN

Worst-case performance analysis of SDF-based parameterized

dataflow™

@ CrossMark

Mladen Skelin®"*, Marc Geilen®, Francky Catthoor¢, Sverre Hendseth?

2 Norwegian University of Science and Technology, 7491 Trondheim, Norway
b Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
¢IMEC vzw, 3001 Leuven, Belgium

ARTICLE INFO

ABSTRACT

Article history:

Received 26 December 2015
Revised 26 October 2016

Accepted 7 December 2016
Available online 12 December 2016

Keywords:

Parameterized dataflow
Synchronous dataflow

SDF -based parameterized dataflow
Max-plus algebra

Worst-case performance

Dynamic dataflow models of computation (MoCs) have been introduced to provide designers with suffi-
cient expressive power to capture increasing levels of dynamism in present-day streaming applications.
Among dynamic dataflow MoCs, parameterized dataflow MoCs hold an important place. This is due to
the fact that they allow for a compact representation of fine-grained data-dependent dynamics inherent
to many present-day streaming applications.

However, these models have been primarily analyzed for functional behavior and correctness, while the
(parametric) analysis of their temporal behavior has attracted less attention.

In this work, we (in a parametric fashion) analyze worst-case performance metrics (throughput and la-
tency) of an important class of parameterized dataflow MoCs based on synchronous dataflow (SDF). We
refer to such models as SDF-based parameterized dataflow (SDF-PDF). We show that parametric analysis
in many cases allows to derive tighter conservative worst-case throughput and latency guarantees than
the existing (nonparametric) techniques that rely on the creation of “worst-case SDF abstractions” of orig-
inal parameterized specifications. Furthermore, we discuss how by using parametric analysis we can help
address the scalability issues of enumerative analysis techniques.

To achieve this, we first introduce the Max-plus algebraic semantics of SDF-PDF. Thereafter, we model
run-time adaptation of parameters using the theory of Max-plus automata. Finally, we show how to de-

rive the worst-case performance metrics from the resulting Max-plus automaton structure.

We evaluate our approach on a representative case study from the multimedia domain.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dataflow models of computation (MoCs) have proven their
value in modeling of streaming applications. Dataflow MoCs are
instantiated as dataflow graphs. In such graphs, nodes are called
actors while edges are called channels. Actors represent computa-
tional kernels, while channels capture the flow of streams of data
values between actors. These data values are called tokens. The es-
sential property of dataflow is that of an actor firing. Simply put,
actor firing denotes the execution of an actor. Actor firing is an
atomic action during which the actor consumes a certain num-
ber of tokens from input channels through its input ports, executes

* Manuscript received December 26, 2015; revised October 26, 2016; accepted De-
cember 7, 2016. This work was partly supported by ITEA 3 project 14014 ASSUME.
* Corresponding author.
E-mail address: m.skelin@tue.nl (M. Skelin).

http://dx.doi.org/10.1016/j.micpro.2016.12.004
0141-9331/© 2016 Elsevier B.V. All rights reserved.

some behavior and produces a certain number of tokens at its out-
put ports that are put on its output channels [1]. These token pro-
duction and consumption numbers are called actor port rates. Ac-
tors fire according to a set of firing rules which specify what and
how many tokens must be available at input ports for the firing
to be enabled. In presence of feedback loops, actors in the loop
would never become enabled because they depend on each other
for tokens. This would lead the graph to a deadlock. Therefore, ini-
tial tokens must be placed on feedback channels. In timed dataflow
under consideration in this paper, actor firing takes a finite amount
of time called the actor firing delay. Furthermore, port rates are
viewed as part of the actor type signature along with the type of
the tokens [2,3]. Port rates can be used to define a graph iteration,
or a set of actor firings that has no net-effect on the token distri-
bution of the graph.

Dataflow MoCs have been traditionally divided into two classes:
static dataflow MoCs [4] and dynamic dataflow MoCs [5].


http://dx.doi.org/10.1016/j.micpro.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.12.004&domain=pdf
mailto:m.skelin@tue.nl
http://dx.doi.org/10.1016/j.micpro.2016.12.004

440 M. Skelin et al./Microprocessors and Microsystems 52 (2017) 439-460

Static dataflow MoCs are in wide use due to their predictability,
strong formal properties and amenability to powerful optimization
techniques [5].

Most well-known representatives of static dataflow are syn-
chronous dataflow (SDF) [6] and cyclo-static dataflow (CSDF) [7]. In
SDF, actor type signatures are fixed and known at compile-time. In
CSDF, actor type signatures can vary between actor firings as long
as the variation complies to a certain type of a periodic pattern.

Static dataflow MoCs owe their “nice” properties to their re-
stricted semantics. This restricted semantics, however, makes them
an inadequate tool choice for capturing the dynamic behavior in-
herent to present-day streaming applications. The need for expres-
sive power beyond that offered by static dataflow MoCs brings us
to the class of dataflow MoCs we call dynamic dataflow MoCs. Dy-
namic dataflow MoCs can be viewed as dataflow formalisms in
which actor type signatures (port rates) and actor firing delays for
timed models vary in ways not entirely predictable at compile-
time [5].

In relation to the concept used to represent the dataflow
dynamics, the work of [5] defines two subclasses of dynamic
dataflow MoCs. First subclass refers to dataflow MoCs that are de-
veloped around an interacting combination of finite-state machines
(FSM) and dataflow graphs. Models such as FSM -based scenario-
aware dataflow (FSM-SADF) [8] and heterochronous dataflow
(HDF) [2] are well-known examples of such FSM /dataflow hybrids
where an FSM is used to decouple control from concurrency.

In HDF, each FSM state is mode-refined by a submodel, where
each refinement has different actor port rates. In FSM-SADF, each
FSM state is associated with an SDF model of a scenario the state
corresponds to. This has the effect that across FSM-SADF iterations
actors operate in different modes or scenarios. In different scenar-
ios, actors have different firing delays and port rates.

In the second subclass, a member of which we focus in this pa-
per, dataflow dynamics are represented by alternative means. This
is advantageous for the users of design tools that are accustomed
to working in the dataflow domain and for which the FSM integra-
tion may represent an experimental concept [9].

Examples of such models are Boolean dataflow (BDF) [10], dy-
namic dataflow (DDF) [10] and parameterized dataflow [5].

In this paper, we are interested in parameterized dataflow as a
meta-modeling technique that integrates parameters and run-time
adaptation of parameters into a certain class of dataflow MoCs we
refer to as base models [5]. This way, using parameters, one is able
to express fine-grained data-dependent dynamics of present-day
streaming applications in a compact way. In particular, we are in-
terested in parameterized dataflow MoCs where SDF serves as the
base model. Such models are of special importance, as SDF is con-
sidered the most stable and mature dataflow MoC.

Examples are parameterized SDF (PSDF) [9], schedulable
parametric dataflow (SPDF) [11], Boolean parametric dataflow
(BPDF) [12] and variable rate dataflow (VRDF) [13].

We refer to such models, obtained by parameterization of SDF
(in terms of rates and actor firing delays in the timed dataflow
context) as SDF -based parameterized dataflow (SDF-PDF). Al-
though such models have been parametrically analyzed for func-
tional behavior and correctness, the parametric analysis of their
temporal behavior, in particular analysis of their performance met-
rics such as throughput and latency, has received far less attention.
However, there are remedies to this. In certain cases it is possible
to create a “worst-case SDF abstraction” of the original parame-
terized specification that can be subjected to standard SDF perfor-
mance analysis techniques [14,15]. The information needed to con-
struct such “worst-case SDF abstraction” would include the upper
endpoints of parameterized actor firing delays assuming that these
are initially box constrained. The validity of such an abstraction fol-

lows from the monotonicity property of SDF [16] that SDF-PDF in-
herits.

However, using upper endpoints of firing delay parameters will
often incur significant amounts of pessimism. E.g., if actors are im-
plemented in software their firing delays correspond to worst-case
execution times (WCETs) of associated software modules. It is of-
ten the case that these WCETs depend on the module inputs in
very complex ways. Paper [17] lists a few examples of applications
where WCETs are expressed as polynomial functions of application
inputs. Therefore, taking the upper endpoints of default parameter
intervals and not considering these dependencies will most defi-
nitely incur a significant amount of pessimism which results in a
decrease of the optimization margin a designer has at hers/his dis-
posal.

The case of graphs containing parameterized rates is even more
complicated, as these necessarily do not influence the temporal be-
havior of the model in a monotonic way. In particular, an increase
in rate value can lead to a decrease in the duration of graph itera-
tion. Things get even worse if these rates show functional depen-
dence on characteristics of the input signal.

A solution to this problem is enumeration, where one would
consider all possible parameter value combinations. However, the
run-time of enumerative analysis will in many cases in practice be
prohibitive due to large spans of values the parameters can attain
(compactness issues).

The aforementioned justifies the need for novel worst-case
parametric performance analysis techniques that by operating di-
rectly on graph parameters remove the need for the touchy
construction process of “worst-case SDF abstractions” of orig-
inal parameterized specifications. Furthermore, we require that
the parametric analysis can account for complex parameter inter-
dependencies, and so avoid the pessimism the analysis based on
“worst-case SDF abstraction” suffers from because it disregards
these inter-dependencies and considers only the upper parame-
ter interval endpoints. Finally, by working directly with parameters
we remove the need for successive analysis of all parameter value
combinations and so we help address the scalability problems the
enumerative analysis is prone to.

In this work we present such a worst-case performance analy-
sis framework for SDF-PDF specifications in consideration of cer-
tain technical constraints we impose on the input graph struc-
tures. Within the framework, we consider self-timed execution of
SDF-PDF structures. Self-timed execution is a schedule where ev-
ery actor fires as soon as possible. The self-timed execution is of
special importance as it defines the tightest bound that can be
given on the temporal behavior of the system captured by an SDF
/SDF-PDF model [16]. We base our approach on the Max-plus alge-
braic [18] semantics of self-timed execution of SDF that SDF-PDF
inherits. We model parameter reconfigurations using the theory
of Max-plus automata [19] by exploiting the Max-plus semantic
equivalence of SDF-PDF parameter reconfigurations and scenario
transitions in FSM-SADF. By subjecting the derived Max-plus au-
tomaton structure to appropriate analysis, we are able to derive the
relevant worst-case throughput and latency metrics for SDF-PDF.

The remainder of this paper is structured as follows. In
Section 2 we illustrate the importance of parameterized dataflow
MoCs for modeling applications exposing fine-grained data-
dependent dynamics and we outline the performance analysis
challenges for such specifications. Section 3 discusses the related
work. Section 4 presents preliminary concepts. Section 5 formally
defines SDF-PDF followed by Section 6 that develops its Max-
plus semantics. Section 7 formally defines the performance metrics
of interest and Section 8 presents techniques for computation of
those metrics. Section 9 demonstrates the application of our tech-
niques on a realistic-case study from the multimedia domain. Fi-
nally, Section 10 concludes.



Download English Version:

https://daneshyari.com/en/article/4956668

Download Persian Version:

https://daneshyari.com/article/4956668

Daneshyari.com


https://daneshyari.com/en/article/4956668
https://daneshyari.com/article/4956668
https://daneshyari.com

