
Microprocessors and Microsystems 54 (2017) 47–59 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Quality-of-service-aware adaptation scheme for multi-core protocol 

processing architecture 

Mohammad Badawi ∗, Zhonghai Lu, Ahmed Hemani 

Department of Electronic Systems, School of ICT, KTH Royal Institute of Technology, Kista, Sweden 

a r t i c l e i n f o 

Article history: 

Received 14 January 2017 

Revised 4 June 2017 

Accepted 21 August 2017 

Available online 31 August 2017 

a b s t r a c t 

Employing adaptable protocol processing architectures has shown a high potential in provisioning 

Quality-of-Service (QoS) while retaining efficient use of available energy budget. Nevertheless, success- 

ful QoS provisioning using adaptable protocol processing architectures requires adaption to be agile and 

to have low latency. That is, a long adaptation latency might lead to violating desired packet processing 

latency, desired throughput or loss of packets if the memory fails to accommodate packet accumulation. 

This paper presents an elastic management scheme to permit agile and QoS-aware adaptation of pro- 

cessing elements (PEs) within the protocol processing architecture, such that desired QoS is maintained. 

Moreover, our proposed scheme has the potential to reduce energy consumption since it employs the 

PEs upon demand. We quantify the latency required for PEs adaptation, the reduction in energy and the 

reduction in area that can be achieved using our scheme. We also consider two different real-life use 

cases to demonstrate the effectiveness of our proposed management scheme in maintaining QoS while 

conserving available energy. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The diversity of modern telecommunication protocols and their 

use cases have led to an increased variation in traffic attributes, 

like rate and burstiness. Therefore, QoS provisioning in such use 

cases has become a challenge for protocol processing architec- 

tures, especially when the consumed energy needs to be con- 

served. However, a common practice to permit QoS provision in 

the case of varying traffic attributes is to dimension the proto- 

col processing architecture based on the worst-case (traffic peak) 

that can occur during the execution of the application [1,2] . How- 

ever, dimensioning the protocol processing architecture based on 

the worst-case might result in low energy efficiency as long as the 

worst-case is not occurring. In order to improve energy efficiency 

and to permit QoS provisioning, adaptable protocol processing ar- 

chitectures can be used [3–6] . 

For instance, the adaptable multi-core protocol processing ar- 

chitecture presented in [3] targets network nodes that have low 

energy-budget and are demanded to perform different roles within 

the network at run time. Depending on the node’s role, i.e., if it 

is end-node or it is used to forward traffic, the protocol process- 

ing architecture used in that node experiences traffic with different 

∗ Corresponding author. 

E-mail address: badawi@kth.se (M. Badawi). 

attributes. To cope with this variation and to maintain energy effi- 

ciency, run-time adaption of processing cores is performed to per- 

mit different levels of parallelism. However, such adaptable proto- 

col processing architecture (and adaptable architectures in general) 

can’t be successfully deployed to permit QoS provisioning as long 

as the following requirements are not fulfilled: 

1) The decision for adaptation must be evaluated with low latency. 

2) Adaptation must be initiated at the right time; neither early nor 

late. 

3) The time required to perform adaptation must be small, thus 

does not lead to violating the estimated worst-case values for 

packet processing latency and packet accumulation in memory. 

In this paper we present an Elastic Management Scheme (EMS) 

that fulfills aforementioned necessary requirements and provides 

adequate management of the resources within the protocol pro- 

cessing architecture. This paper extends our previous research on 

the elastic management scheme [7] , which is designed to provide 

control and management for the multi-core protocol processing ar- 

chitecture and the memory controller we have published in [3] and 

[8] respectively. 

The EMS presented in this paper is a reconfigurable tile-based 

architecture. The reconfigurability of the EMS permits its tiles to 

be rapidly clustered at run-time, thus adaptation of resources can 

be performed. Each of these tiles contains a Static Random-Access 

Memory (SRAM)-based Finite-State Machine (FSM), hence called 

http://dx.doi.org/10.1016/j.micpro.2017.08.006 

0141-9331/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2017.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.08.006&domain=pdf
mailto:badawi@kth.se
http://dx.doi.org/10.1016/j.micpro.2017.08.006


48 M. Badawi et al. / Microprocessors and Microsystems 54 (2017) 47–59 

FSM-tile. The FSM-tile is used to control single PE, however, if 

more than one PE is employed for the same use-case, an equal 

number of FSM-tiles can be interconnected in one cluster to con- 

trol the PEs. Meaning that the main contribution of our proposed 

EMS are summarized as follows: 

• It permits QoS-aware adaptation of PEs within the protocol pro- 

cessing architecture, such that the desired QoS can be main- 

tained and the energy can be conserved. To make this possible 

we propose an approach for determining the right time to initi- 

ate adaption, where we utilize a well-established deterministic 

queuing theory called Network Calculus [9] . 

• It reduces the energy consumption and the latency that are re- 

quired for next-state evaluation, in comparison with conven- 

tional SRAM-based FSM. 

• It reduces the memory size (consequently the area) that is re- 

quired when FSM-tiles are interconnecting in a cascade within 

a cluster, in comparison with conventional FSM-cascade ap- 

proaches. 

We quantify the reduction in energy, latency and SRAM area 

that our EMS can achieve and we discuss the results in Section 5 . 

To study the effectiveness of the EMS in providing QoS provision- 

ing during real-life use cases while conserving available energy, 

we conduct two different experiments. In the first experiment, we 

consider a multi-participant Voice Over Internet Protocol (VOIP) call 

to demonstrate the effectiveness of the EMS in providing lossless- 

and latency-guaranteed service. In the second experiment, we con- 

sider the case of compressing, encrypting and transmitting packets 

using IP Payload Compression Protocol (IPComp) [10,11] together 

with IP Encapsulating Security Payload IP (ESP) [12] to demon- 

strate the effectiveness of the EMS in maintaining desired through- 

put. The results that are collected from these two experiments are 

reported and discussed in detail in Section 5 . In next section, we 

review a set of relevant research works and we discuss their simi- 

larities and differences in comparison with our proposed EMS . 

2. Related work 

In [13] , Bonesana et al. proposed an adaptable architecture to- 

gether with a compiler to parallelize the execution in regular ex- 

pression matching. This architecture has a datapath that is orga- 

nized in parallel clusters and it permits the end-designer to select 

the number of parallel components that fulfill the requirements 

of the use-case. Selecting the number of parallel components is 

done at compile-time using a cost function, which calculates the 

trade-offs between performance, power and area. Similarly to [13] , 

our proposed design uses static analysis of the use case to permit 

compile-time reconfiguration. Moreover, our proposed design per- 

mits adaptation of resources at run-time, which is critical to main- 

tain desired QoS. 

In [14] , Shiyanovskii et al. proposed a SW adaptation man- 

ager for run-time scheduling of reconfigurable HW fabric. The pro- 

posed adaptation manager assumes pre-configured tiles of hard- 

ware where each is tailored for certain power or performance 

requirement. The adaption manager has access to a library of 

function-configurations and it assigns application functions to the 

HW by loading the function-configuration that meets the demand. 

During execution, the adaption manager collects information re- 

lated to power and processing time and use them to enrich its 

knowledge-base, which is used for making future adaptation de- 

cisions. Our proposed scheme also assumes a pre-configured tiles 

of resources to enable rapid adaptability. However, we propose a 

complete HW system where information regarding the processing 

can be collected concurrently to the main execution flow and the 

mechanism for making adaptation decision is embedded within 

the pre-configured resources. 

In [15] , Wu et al. proposed an elastic CPU-based architecture 

attempting to make the desired trade-off between power and per- 

formance through adaptation of micro-architectural resources and 

run-time. Our architecture is different from the one proposed in 

[15] since it allows the management of a multi-PE datapath that 

can be homogeneous or heterogeneous without restricting the PEs 

to be instruction-set based. 

Basically, collecting processing-status and resource-status infor- 

mation is essential to the adaptation of resources at run-time. 

To collect such status and statistical information, Software (SW), 

Hardware (HW) or hybrid monitors can be utilized, such that QoS, 

buffer usage or power can be observed [16,17] . Dubach et al. in 

[18] , proposed using HW monitors to collect system’s status in- 

formation at run-time then supply this information to a SW pre- 

dictive model. The SW then decide to adapt the architecture, in 

order to fulfill performance/energy demanded during the different 

phases of the application. However, the authors of [18] mentioned 

that their method for collecting status information using the HW 

monitors interferes with the main execution flow and lead to a risk 

of saturating processing resources. Our HW monitoring mechanism 

is different from the once proposed in [18] since it operates con- 

currently without interference with the processing flow. 

Ruaro et al. proposed in [17] a run-time management approach 

to support QoS in real-time applications. The approach proposed in 

[17] has some similarity to our approach where QoS thresholds are 

determined at compile/configuration time then run-time monitor- 

ing is used to detect surpassed thresholds. However, the scheme 

presented in [17] performs indirect and direct task migration be- 

tween resources to utilize available and sustain QoS. With direct 

task migration, the task is stopped and moved (in addition to its 

processing context) to another resource. Alternatively, indirect task 

migration moves the tasks that share the resource with the task 

that has the priority to be served. In contrast, the resources in our 

approach can enabled upon demand and utilized within the exe- 

cution space of the task. 

Azimi et al. in [19] mentioned that HW performance monitors, 

not only have limited number of counters, but also their use is lim- 

ited to collect micro-architectural details. As a remedy, the authors 

of [19] proposed using counter multiplexing as a solution. In our 

view, the components within the HW performance monitor and 

the number of needed HW counters depends on the application 

and the nature of events to record. However, the key requirements 

are the concurrency in collecting information and the low-latency 

notification in case of surpassed threshold(s) [20] . Our architecture 

fulfills these requirements since it uses HW monitors that oper- 

ate concurrently to the main execution flow and have single-cycle 

notification latency upon surpassed threshold(s). In addition, the 

monitors in our proposed architecture are customizable, such that 

their internal components the bit-width of their components can 

be selected at design time according to application needs. Regard- 

less of how it is customized, the monitor receives a continuous 

track of information regarding processing latency, number of exe- 

cuted packets and backlog size from the underlying PEs and mem- 

ory controller. 

In [21] , García-Vergas et al. presented a Read Only Memory 

(ROM) -based implementation of the FSM. In this ROM-based im- 

plementation, the size of ROM increases with respects to the num- 

ber of input events. Therefore, the authors of [21] proposed an in- 

put multiplexing mechanism, which only considers effective inputs. 

This input multiplexing mechanism shown a potential to reduce 

the size of the ROM required, however such anticipated reduction 

is dictated by the number of effective inputs, and in the worst- 

case there will be no reduction and the cost of multiplexers will be 

counted as an overhead. Our case assume FSMs with independent 

input vectors and uses a per-state state-transition table to benefit 

from use-case dependent improvements. 



Download English Version:

https://daneshyari.com/en/article/4956710

Download Persian Version:

https://daneshyari.com/article/4956710

Daneshyari.com

https://daneshyari.com/en/article/4956710
https://daneshyari.com/article/4956710
https://daneshyari.com

