
Microprocessors and Microsystems 51 (2017) 275–288 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Combining hardware and software codecs to enhance data channels in 

FPGA streaming systems 

Marlon Wijeyasinghe 

∗, David Thomas 

Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 30 July 2016 

Revised 3 May 2017 

Accepted 6 May 2017 

Available online 8 May 2017 

Keywords: 

FPGA 

Codec 

Compression 

Streaming 

Multithreading 

a b s t r a c t 

This paper discusses a framework to apply compute-intensive data transforms (codecs) to data flowing 

through a channel between a CPU and an FPGA kernel on a heterogeneous streaming system. Codecs such 

as parallel compression are applied to data across a PCI-express channel in real-time, aiming to increase 

the effective bandwidth by using spare resources in both software and hardware. Other codecs such as 

encryption can be applied while minimising the loss in performance. Real-time encoding/decoding is per- 

formed by breaking up the data stream into segments for multiple threads to process different segments. 

This allows the interleaving of encoding, transmission and decoding on the CPU, hence the framework 

functions as a software pipeline. The capabilities of the framework are demonstrated using 4 compres- 

sion codecs and an encryption codec on a Maxeler system. For example, 1.51x and 1.85x speed ups are 

observed respectively when delta compression and double to single precision floating point conversion 

are applied to the data being transmitted to/from an identity kernel on the FPGA. Similarly, a 1.61x speed 

up is observed when double-to-single precision floating point conversion is applied to data being trans- 

mitted to/from an FPGA kernel performing a Fast Fourier Transform. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

State-of-the-art FPGA streaming systems are ideal for high- 

performance computing (HPC) applications as they use pipeline 

parallelism and replicated pipelines to achieve high speed compu- 

tation. Such applications have traditionally been built at the Regis- 

ter Transfer Level (RTL), but the time this takes is increasing due to 

the complexity of developing pipelines and coordinating dataflow. 

HPC programmers (kernel designers) now use high-level synthesis 

(HLS) tools to handle low-level aspects such as instantiating and 

re-timing pipelines in hardware kernels. 

HLS tools have drawbacks despite their ability to simplify the 

design process – the kernel designer is restricted to using lan- 

guage/library primitives provided by the tool to describe logic, 

arithmetic and stream control. Hence they must revert to an RTL 

description to implement features that are not included in the 

streaming services provided by the tool. 

A major challenge that streaming systems face is limited data 

bandwidth to/from the chip. FPGA kernels are capable of high- 

speed computation, but if the channel supplying data to the ker- 

∗ Corresponding author. 

E-mail addresses: marlon.wijeyasinghe09@imperial.ac.uk (M. Wijeyasinghe), 

d.thomas1@imperial.ac.uk (D. Thomas). 

nel is incapable of providing data at the required speed, it is not 

possible to make full use of the kernel’s computational capabilities. 

One way to mitigate the bandwidth issue in an existing high-level 

streaming system is for the HPC programmer to design compres- 

sion at RTL or include pseudo-RTL code within the high-level code. 

This adds complexity to the design process in both software and 

hardware thereby reducing the benefits of working with HLS tools. 

This paper proposes a framework to add compute-intensive 

real-time codecs (e.g. compression to improve effective bandwidth) 

by using spare CPU cycles on the software side and spare FPGA 

resources on the hardware side of the channel in heterogeneous 

streaming applications. Software codecs must be multi-threaded 

and hardware codecs must be pipelined to operate at line rate 

(channel data rate) to avoid reducing bandwidth in the system. The 

discussion in this paper builds on a paper that was presented at 

the International Symposium on Applied Reconfigurable Comput- 

ing 2016 [1] , by applying the framework to a Fast Fourier Trans- 

form (FFT) application and testing the framework with encryption, 

a non-compression codec. 

Hence, the contributions of this paper are: 

• A multi-threaded framework to apply compute-intensive codecs 

to a segmented data stream by using spare resources in soft- 

ware and hardware for high-bandwidth applications. 

http://dx.doi.org/10.1016/j.micpro.2017.05.003 

0141-9331/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2017.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.05.003&domain=pdf
mailto:marlon.wijeyasinghe09@imperial.ac.uk
mailto:d.thomas1@imperial.ac.uk
http://dx.doi.org/10.1016/j.micpro.2017.05.003


276 M. Wijeyasinghe, D. Thomas / Microprocessors and Microsystems 51 (2017) 275–288 

• A concrete implementation of the framework in a commercial 

platform using C code on the CPU side and OpenSPL code on 

the FPGA side. 

• A model for predicting the end-to-end transmission latency 

when the framework is applied to a streaming system. 

• Evaluation of data transmission performance across a PCI- 

express channel on a heterogeneous system when a range of 

different codecs such as compression and encryption are ap- 

plied. 

• A comparison of measured values with model-predicted perfor- 

mance for different codecs. 

Section 2 , the background section discusses related work in this 

field. Section 3 provides a detailed description of the framework 

proposed by this paper. Section 4 describes a mathematical model 

to predict the performance of streaming systems operating under 

this framework. Section 5 evaluates the performance of the frame- 

work on a commercial platform when different codecs were ap- 

plied to streaming systems. Section 6 summarises the discussion 

in the paper. 

2. Background 

FPGA streaming systems accelerate computationally intensive 

algorithms by exploiting their parallelism and/or using replicated 

pipelines. This is done by transmitting data along a pipelined ker- 

nel at a high throughput. Previous work on streaming applications 

have demonstrated that FPGAs can outperform multi-core CPUs 

in terms of speed and energy efficiency. Examples are the Lat- 

tice Boltzmann Method (LBM) [2] , Discrete Cosine Transform (DCT) 

[3] and Finite Impulse Response filters [3] . Such implementations 

are suitable where large amounts of data are transmitted such that 

the total transmission time is much larger than the pipeline la- 

tency; thereby making the implementation tolerant to latency. 

The bandwidth problem arises due to limitations in the capabil- 

ity of data channels in high-bandwidth applications. The I/O band- 

width of the chip is restricted by the number of I/O pins and the 

clock frequency of their corresponding registers. The physical char- 

acteristics of the off-chip data channel(s) which are used to access 

the FPGA can also limit the bandwidth with which the FPGA can 

be accessed externally. For example, this work uses the Maxeler 

[4] heterogeneous CPU-FPGA platform where the CPU transmits 

data to and from the FPGA via PCI-express 2.0 x8. The PCI-express 

channel has a theoretical bandwidth of 4GB/s in either direction 

(total 8GB/s), but the Maxeler card itself only has a bandwidth 

of up to 2GB/s in either direction (total 4GB/s). When the duplex 

channel bandwidth was measured under the low-latency interface 

(discussed later), it was observed to be 2509MB/s. Assuming si- 

multaneous transmission in both directions, if a pipelined compu- 

tation kernel on the FPGA has a 128-bit wide data bus, the channel 

bandwidth is sufficient to support the kernel being clocked at up 

to 134 MHz. A kernel with a higher clock frequency will not run at 

full capacity since the channel supplying the kernel is a bottleneck. 

To tackle the bandwidth bottleneck on streaming systems, sev- 

eral different com pression methods have previously been imple- 

mented on FPGAs. For example, prediction-based floating point 

hardware compression and decompression have been design to be 

placed at either end of an LBM streaming kernel to improve ef- 

fective memory bandwidth; one variation achieved a compression 

ratio of around 3.8 [5] and another variation, which used integer- 

based prediction achieved a compression ratio of around 3.5 [6] . 

Similarly, sparse matrix vector multiplication, a memory-bound al- 

gorithm was accelerated by compressing redundant non-zero data 

using spare FPGA resources and achieved average compression ra- 

tios of 1.14–1.40 and a maximum ratio of 2.65 [7] . The adaptive 

JPEG-LS algorithm has also been implemented previously achiev- 

ing a speed of 75 megapixels per second [8] . These compression 

methods are specific to the data type being compressed and opti- 

mised for the specific algorithm for which they were designed. Ad- 

ditionally, the computation kernel was not modified in these two 

cases. 

The framework that this paper presents works with a good de- 

gree of transparency, under the same principle of not modifying 

the kernel. However its emphasis is broader than purely accelerat- 

ing bandwidth-bottlenecked HPC applications by designing state- 

of-the-art compression algorithms – but rather to use compres- 

sion codecs to demonstrate the capability of the proposed frame- 

work. The framework aims to enhance communication between 

software-hardware boundaries. 

Some general purpose compression algorithms have also been 

implemented on FPGAs previously. A streaming implementation 

of the general purpose ZLIB algorithm [9] was implemented on 

FPGA and it operates at 125MB/s. The LZMA algorithm [10] oper- 

ates at up to 16MB/s. GZIP [11] attained a compression bandwidth 

of 110MB/s and a decompression bandwidth of 306MB/s. A par- 

ticular implementation of LZW [12] achieved a compression band- 

width of 88MB/s and a decompression bandwidth of 160MB/s. An 

implementation of a processor for LZ-based algorithms had a com- 

pression speed of 16MB/s [13] . While it is important to note that 

these implementations were evaluated on older technology (there- 

fore they will be faster on newer technology), all 3 are at least an 

order of magnitude slower than our measured channel bandwidth 

(2509MB/s). For real-time compression in high-bandwidth stream- 

ing systems, a fast compression speed is the most important factor 

rather than the compression ratio. These existing implementations 

are not able to meet the real-time requirements of state-of-the-art 

FPGA streaming systems. 

There have been attempts at compression targeted at high- 

bandwidth FPGA applications. The Titan-R [14] hardware compres- 

sor core was shown to perform the LZ277 algorithm at 1096MB/s. 

Two more implementations of the LZ277 algorithm for multigiga- 

bit networks was shown to have a throughput of 1113MB/s and 

1173MB/s [15] . The X-MatchPRO lossless data compressor has an 

internal throughput of 100MB/s and a duplex compression and de- 

compression performance of 200MB/s [16,17] . An improved ver- 

sion of this, namely X-MatchPROv4 has an internal throughput 

of 200MB/s and a duplex compression and decompression perfor- 

mance of 400MB/s [18] . The LZSS algorithm (based on LZ277) was 

found to operate at 52MB/s [19] . An implementation of the 842B 

algorithm [20] (with two compression and two decompression en- 

gines) was measured to have a duplex compression and decom- 

pression throughput of 2723MB/s. The latter algorithm has duplex 

bandwidth that exceeds the bandwidth of the channel and is rel- 

atively small in terms of hardware resource usage. If a sufficiently 

fast software version of the algorithm is also available, then this 

is the only existing algorithm that would work across a software- 

hardware channel on a streaming system. The others do not have 

any corresponding software implementations. 

Other proposals of general data channel enhancements have 

been made, using various approaches. For example, [21] initially 

proposed the idea of transparently adding capabilities such as 

compression and error correction to data channels without mod- 

ifying the kernel. 

Similiar platforms have been developed in other work, albeit 

to perform different functions. Such a platform is [22] , which is 

a framework for simplifying communication between FPGAs and 

GPUs via PCIe on heterogeneous hardware accelerators which use 

both GPUs and FPGAs. The FPGA-GPU framework enables easy data 

transfer and coordination between a GPU and FPGA. In [24] , the 

authors describe how a high-level streaming language called Brook 

can simplify the design of HW accelerators and achieve good per- 

formance including features such as kernel replication. In [25] , the 



Download English Version:

https://daneshyari.com/en/article/4956739

Download Persian Version:

https://daneshyari.com/article/4956739

Daneshyari.com

https://daneshyari.com/en/article/4956739
https://daneshyari.com/article/4956739
https://daneshyari.com

