Microprocessors and Microsystems 51 (2017) 275-288

Microprocessors and Microsystems

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

journal homepage: www.elsevier.com/locate/micpro

Combining hardware and software codecs to enhance data channels in @CmssMark

FPGA streaming systems

Marlon Wijeyasinghe*, David Thomas

Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

ARTICLE INFO

ABSTRACT

Article history:

Received 30 July 2016
Revised 3 May 2017
Accepted 6 May 2017
Available online 8 May 2017

Keywords:
FPGA

Codec
Compression
Streaming
Multithreading

This paper discusses a framework to apply compute-intensive data transforms (codecs) to data flowing
through a channel between a CPU and an FPGA kernel on a heterogeneous streaming system. Codecs such
as parallel compression are applied to data across a PCl-express channel in real-time, aiming to increase
the effective bandwidth by using spare resources in both software and hardware. Other codecs such as
encryption can be applied while minimising the loss in performance. Real-time encoding/decoding is per-
formed by breaking up the data stream into segments for multiple threads to process different segments.
This allows the interleaving of encoding, transmission and decoding on the CPU, hence the framework
functions as a software pipeline. The capabilities of the framework are demonstrated using 4 compres-
sion codecs and an encryption codec on a Maxeler system. For example, 1.51x and 1.85x speed ups are
observed respectively when delta compression and double to single precision floating point conversion
are applied to the data being transmitted to/from an identity kernel on the FPGA. Similarly, a 1.61x speed
up is observed when double-to-single precision floating point conversion is applied to data being trans-

mitted to/from an FPGA kernel performing a Fast Fourier Transform.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

State-of-the-art FPGA streaming systems are ideal for high-
performance computing (HPC) applications as they use pipeline
parallelism and replicated pipelines to achieve high speed compu-
tation. Such applications have traditionally been built at the Regis-
ter Transfer Level (RTL), but the time this takes is increasing due to
the complexity of developing pipelines and coordinating dataflow.
HPC programmers (kernel designers) now use high-level synthesis
(HLS) tools to handle low-level aspects such as instantiating and
re-timing pipelines in hardware kernels.

HLS tools have drawbacks despite their ability to simplify the
design process - the kernel designer is restricted to using lan-
guage/library primitives provided by the tool to describe logic,
arithmetic and stream control. Hence they must revert to an RTL
description to implement features that are not included in the
streaming services provided by the tool.

A major challenge that streaming systems face is limited data
bandwidth to/from the chip. FPGA kernels are capable of high-
speed computation, but if the channel supplying data to the ker-

* Corresponding author.
E-mail addresses: marlon.wijeyasinghe09@imperial.ac.uk (M. Wijeyasinghe),
d.thomas1@imperial.ac.uk (D. Thomas).

http://dx.doi.org/10.1016/j.micpro.2017.05.003
0141-9331/© 2017 Elsevier B.V. All rights reserved.

nel is incapable of providing data at the required speed, it is not
possible to make full use of the kernel’s computational capabilities.
One way to mitigate the bandwidth issue in an existing high-level
streaming system is for the HPC programmer to design compres-
sion at RTL or include pseudo-RTL code within the high-level code.
This adds complexity to the design process in both software and
hardware thereby reducing the benefits of working with HLS tools.

This paper proposes a framework to add compute-intensive
real-time codecs (e.g. compression to improve effective bandwidth)
by using spare CPU cycles on the software side and spare FPGA
resources on the hardware side of the channel in heterogeneous
streaming applications. Software codecs must be multi-threaded
and hardware codecs must be pipelined to operate at line rate
(channel data rate) to avoid reducing bandwidth in the system. The
discussion in this paper builds on a paper that was presented at
the International Symposium on Applied Reconfigurable Comput-
ing 2016 [1], by applying the framework to a Fast Fourier Trans-
form (FFT) application and testing the framework with encryption,
a non-compression codec.

Hence, the contributions of this paper are:

» A multi-threaded framework to apply compute-intensive codecs
to a segmented data stream by using spare resources in soft-
ware and hardware for high-bandwidth applications.


http://dx.doi.org/10.1016/j.micpro.2017.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.05.003&domain=pdf
mailto:marlon.wijeyasinghe09@imperial.ac.uk
mailto:d.thomas1@imperial.ac.uk
http://dx.doi.org/10.1016/j.micpro.2017.05.003

276 M. Wijeyasinghe, D. Thomas/Microprocessors and Microsystems 51 (2017) 275-288

» A concrete implementation of the framework in a commercial
platform using C code on the CPU side and OpenSPL code on
the FPGA side.

« A model for predicting the end-to-end transmission latency
when the framework is applied to a streaming system.

 Evaluation of data transmission performance across a PCI-
express channel on a heterogeneous system when a range of
different codecs such as compression and encryption are ap-
plied.

+ A comparison of measured values with model-predicted perfor-
mance for different codecs.

Section 2, the background section discusses related work in this
field. Section 3 provides a detailed description of the framework
proposed by this paper. Section 4 describes a mathematical model
to predict the performance of streaming systems operating under
this framework. Section 5 evaluates the performance of the frame-
work on a commercial platform when different codecs were ap-
plied to streaming systems. Section 6 summarises the discussion
in the paper.

2. Background

FPGA streaming systems accelerate computationally intensive
algorithms by exploiting their parallelism and/or using replicated
pipelines. This is done by transmitting data along a pipelined ker-
nel at a high throughput. Previous work on streaming applications
have demonstrated that FPGAs can outperform multi-core CPUs
in terms of speed and energy efficiency. Examples are the Lat-
tice Boltzmann Method (LBM) [2], Discrete Cosine Transform (DCT)
[3] and Finite Impulse Response filters [3]. Such implementations
are suitable where large amounts of data are transmitted such that
the total transmission time is much larger than the pipeline la-
tency; thereby making the implementation tolerant to latency.

The bandwidth problem arises due to limitations in the capabil-
ity of data channels in high-bandwidth applications. The 1/O band-
width of the chip is restricted by the number of I/O pins and the
clock frequency of their corresponding registers. The physical char-
acteristics of the off-chip data channel(s) which are used to access
the FPGA can also limit the bandwidth with which the FPGA can
be accessed externally. For example, this work uses the Maxeler
[4] heterogeneous CPU-FPGA platform where the CPU transmits
data to and from the FPGA via PCl-express 2.0 x8. The PCl-express
channel has a theoretical bandwidth of 4GB/s in either direction
(total 8GB/s), but the Maxeler card itself only has a bandwidth
of up to 2GB/s in either direction (total 4GB/s). When the duplex
channel bandwidth was measured under the low-latency interface
(discussed later), it was observed to be 2509MB/s. Assuming si-
multaneous transmission in both directions, if a pipelined compu-
tation kernel on the FPGA has a 128-bit wide data bus, the channel
bandwidth is sufficient to support the kernel being clocked at up
to 134 MHz. A kernel with a higher clock frequency will not run at
full capacity since the channel supplying the kernel is a bottleneck.

To tackle the bandwidth bottleneck on streaming systems, sev-
eral different compression methods have previously been imple-
mented on FPGAs. For example, prediction-based floating point
hardware compression and decompression have been design to be
placed at either end of an LBM streaming kernel to improve ef-
fective memory bandwidth; one variation achieved a compression
ratio of around 3.8 [5] and another variation, which used integer-
based prediction achieved a compression ratio of around 3.5 [6].
Similarly, sparse matrix vector multiplication, a memory-bound al-
gorithm was accelerated by compressing redundant non-zero data
using spare FPGA resources and achieved average compression ra-
tios of 1.14-1.40 and a maximum ratio of 2.65 [7]. The adaptive
JPEG-LS algorithm has also been implemented previously achiev-

ing a speed of 75 megapixels per second [8]. These compression
methods are specific to the data type being compressed and opti-
mised for the specific algorithm for which they were designed. Ad-
ditionally, the computation kernel was not modified in these two
cases.

The framework that this paper presents works with a good de-
gree of transparency, under the same principle of not modifying
the kernel. However its emphasis is broader than purely accelerat-
ing bandwidth-bottlenecked HPC applications by designing state-
of-the-art compression algorithms - but rather to use compres-
sion codecs to demonstrate the capability of the proposed frame-
work. The framework aims to enhance communication between
software-hardware boundaries.

Some general purpose compression algorithms have also been
implemented on FPGAs previously. A streaming implementation
of the general purpose ZLIB algorithm [9] was implemented on
FPGA and it operates at 125MB/s. The LZMA algorithm [10] oper-
ates at up to 16MB/s. GZIP [11] attained a compression bandwidth
of 110MB/s and a decompression bandwidth of 306MB/s. A par-
ticular implementation of LZW [12] achieved a compression band-
width of 88MB/s and a decompression bandwidth of 160MB/s. An
implementation of a processor for LZ-based algorithms had a com-
pression speed of 16MB/s [13]. While it is important to note that
these implementations were evaluated on older technology (there-
fore they will be faster on newer technology), all 3 are at least an
order of magnitude slower than our measured channel bandwidth
(2509MB/s). For real-time compression in high-bandwidth stream-
ing systems, a fast compression speed is the most important factor
rather than the compression ratio. These existing implementations
are not able to meet the real-time requirements of state-of-the-art
FPGA streaming systems.

There have been attempts at compression targeted at high-
bandwidth FPGA applications. The Titan-R [14] hardware compres-
sor core was shown to perform the LZ277 algorithm at 1096MB;s.
Two more implementations of the LZ277 algorithm for multigiga-
bit networks was shown to have a throughput of 1113MB/s and
1173MB/s [15]. The X-MatchPRO lossless data compressor has an
internal throughput of 100MB/s and a duplex compression and de-
compression performance of 200MB/s [16,17]. An improved ver-
sion of this, namely X-MatchPROv4 has an internal throughput
of 200MB/s and a duplex compression and decompression perfor-
mance of 400MB/s [18]. The LZSS algorithm (based on LZ277) was
found to operate at 52MB/s [19]. An implementation of the 842B
algorithm [20] (with two compression and two decompression en-
gines) was measured to have a duplex compression and decom-
pression throughput of 2723MB/s. The latter algorithm has duplex
bandwidth that exceeds the bandwidth of the channel and is rel-
atively small in terms of hardware resource usage. If a sufficiently
fast software version of the algorithm is also available, then this
is the only existing algorithm that would work across a software-
hardware channel on a streaming system. The others do not have
any corresponding software implementations.

Other proposals of general data channel enhancements have
been made, using various approaches. For example, [21] initially
proposed the idea of transparently adding capabilities such as
compression and error correction to data channels without mod-
ifying the kernel.

Similiar platforms have been developed in other work, albeit
to perform different functions. Such a platform is [22], which is
a framework for simplifying communication between FPGAs and
GPUs via PCle on heterogeneous hardware accelerators which use
both GPUs and FPGAs. The FPGA-GPU framework enables easy data
transfer and coordination between a GPU and FPGA. In [24], the
authors describe how a high-level streaming language called Brook
can simplify the design of HW accelerators and achieve good per-
formance including features such as kernel replication. In [25], the



Download English Version:

https://daneshyari.com/en/article/4956739

Download Persian Version:

https://daneshyari.com/article/4956739

Daneshyari.com


https://daneshyari.com/en/article/4956739
https://daneshyari.com/article/4956739
https://daneshyari.com

