
Microprocessors and Microsystems 50 (2017) 54–65 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Virtual duplication and mapping prefetching for emerging storage 

primitives in NAND flash memory storage systems 

Yi Wang 

a , b , ∗, Lisha Dong 

b , Zhong Ming 

b , Yong Guan 

c , Zili Shao 

d 

a Beijing Advanced Innovation Center for Imaging Technology, China 
b College of Computer Science and Software Engineering, Shenzhen University, China 
c College of Information Engineering, Capital Normal University, China 
d Embedded Systems and CPS Laboratory, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China 

a r t i c l e i n f o 

Article history: 

Received 2 February 2016 

Revised 19 December 2016 

Accepted 28 February 2017 

Available online 7 March 2017 

Keywords: 

Storage primitives 

NAND flash memory 

On-demand 

Mapping prefetching 

Virtualization 

a b s t r a c t 

NAND flash memory has become the mainstream storage medium for both enterprise high performance 

computers and embedded systems. However, over the past several decades, the storage primitives that 

access secondary storage have remained unchanged, forcing NAND flash memory to serve merely as a 

block device like hard disk drive. Recently, several emerging storage primitives have been presented to 

explore the potential value of non-volatile memory devices. Although these primitives can significantly 

boost the access performance by providing virtual to logical address mappings, they still suffer from large 

RAM footprint to maintain the address mapping table and require further support for update operations. 

This paper presents ESP to optimize E merging S torage P rimitives with virtualization for flash memory 

storage systems. We propose two optimization strategies, virtual duplication and mapping prefetching to 

solve the critical issues in existing emerging storage primitives. The objective is to reduce unnecessary 

flash memory accesses and keep RAM footprint of address mapping table well under control. We have 

evaluated ESP on an embedded development platform. Experimental results show that ESP can signifi- 

cantly improve the write/read performance and reduce over 30% of garbage collection operations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

During past decades, the capacity of NAND flash memory has 

been increasing dramatically, leading to the use of nonvolatile flash 

in the system’s memory hierarchy [1] . However, storage interfaces 

for accessing secondary storage devices have remained largely un- 

changed since the invention of magnetic disk. Three storage prim- 

itives (i.e., seek, read, and write) are still being used as fundamen- 

tal interfaces to persistent storage. These legacy storage primitives 

force secondary storage devices to behave as a fast block device 

like magnetic disk and ignore the possibility to boost the perfor- 

mance of storage devices with other types of non-volatile memory, 

especially NAND flash memory. As existing storage primitives are 

designed to cater for the traditional hard disk, considerable effort s 

at architectural and operating system levels are required to facili- 

tate smooth access to NAND flash memory as secondary storage. 

∗ Corresponding author. 

E-mail address: yiwang@szu.edu.cn (Y. Wang). 

In order to utilize the unique feature of NAND flash mem- 

ory, storage virtualization has been adopted to introduce abstrac- 

tion between physical storage device and the logical device pre- 

sented to the host application. Some recent virtualization tech- 

niques adopt a new class of emerging storage primitives be- 

yond traditional block I/O. By providing address remapping at the 

application-level [2] , it effectively extends current storage primi- 

tives and provides more flexibility to users. Despite its promising 

benefits, this technique still suffers from unnecessary write and 

update operations for NAND flash memory devices, which will sig- 

nificantly affect the endurance and access latency of storage sys- 

tems. The large RAM cost to maintain the address mappings in 

these virtualization techniques will also degrade the performance 

of storage systems. These observations motivate us to design an 

optimization strategy to enhance the emerging storage primitives 

and to reduce RAM footprint for flash memory storage devices. 

In previous studies, advanced storage virtualization techniques, 

such as deduplication and thin-provisioning, have shown greater 

flexibility to manipulate address remapping and re-direct I/O [3–

5] . Flash translation layer (FTL) is also a type of virtualization 

that manages the address translation between logical and physical 

http://dx.doi.org/10.1016/j.micpro.2017.02.008 

0141-9331/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2017.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.02.008&domain=pdf
mailto:yiwang@szu.edu.cn
http://dx.doi.org/10.1016/j.micpro.2017.02.008


Y. Wang et al. / Microprocessors and Microsystems 50 (2017) 54–65 55 

addresses for flash memory devices. However, these optimization 

techniques are still working behind the block device interface, re- 

sulting in sub-optimal access performance across various storage 

layers. FTL also restricts the range of the logical addresses to be 

the same as that of the physical addresses [6] . This will prevent 

the application users from directly controlling the I/O accesses in 

flash memory devices. 

In this paper, we present ESP to optimize E merging S torage 

P rimitives with virtualization for flash memory storage systems. 

ESP adopts emerging storage primitives and handles the virtual ad- 

dresses to achieve reduced updates to the flash memory storage 

systems, with the resulting advantage that file operations from ap- 

plication users can directly manipulate the I/O accesses without in- 

curring extra RAM cost. With ESP, file system users can continue to 

enjoy advanced file system features, such as scalability and perfor- 

mance enhancements for large files. By manipulating the address 

translation between virtual address and logical address, ESP can 

significantly reduce unnecessary I/O operations. Therefore, it can 

boost the access performance and extend the life time of NAND 

flash memory devices. 

ESP adopts two strategies to handle write/read requests from 

the file system and transparently issues the requests to flash trans- 

lation layer. ESP uses virtual duplication strategy to maintain the 

address mappings where multiple virtual addresses with the same 

content could be pointed to the same logical address. Emerging 

storage primitives are utilized to facilitate the address translation. 

ESP also uses mapping prefetching strategy to reduce the RAM cost 

for maintaining virtual to logical address mappings. The address 

mapping table is stored in flash memory, and only limited map- 

ping items are prefetched to working RAM based on the demand 

fashion. By using these two strategies, ESP can take advantage of 

emerging storage primitives and keep the RAM cost well under 

control. 

We applied ESP to the ext3 file system and tested the perfor- 

mance using a variety of I/O traces. We use response time and 

garbage collection overhead as metrics to evaluate the performance 

of ESP. Experimental results show that our approach can improve 

the response time by 56.71% and reduce an average of 34.10% for 

garbage collection operations in comparison with a representative 

scheme that uses emerging storage primitives. 

This paper makes the following contributions: 

• We present reliability enhancement strategies that can trans- 

parently protect the data integrity of metadata in NAND flash 

memory. 

• We demonstrate the effectiveness of our technique by compar- 

ing with representative works using a set of realistic I/O traces. 

The rest of this paper is organized as follows. Section 2 dis- 

cusses the motivation and analyzes the problem. Section 3 presents 

our proposed ESP in detail. Section 4 presents experimental results. 

Finally, Section 5 concludes this paper and discusses future work. 

2. Background and motivation 

Modern file systems (e.g., ext3 file system) normally adopt jour- 

naling file systems. For a journaling file system, it will first write 

information about pending updates to a write-ahead log [7] , and 

then commit the updates to disk. The design of journaling file sys- 

tems is to guarantee the consistency of the file system upon power 

failure or other system crashes. This process works well when the 

secondary storage is a hard disk drive, as hard disk drives accept 

in-place update that will not incur time and space overhead. How- 

ever, when a journaling file system is built on a flash memory de- 

vice, the same file system changes in the main memory have to be 

written to storage twice [8] . 

A NAND flash memory chip contains multiple blocks, and each 

physical block consists of a fixed number of physical pages. A block 

is the basic unit for erase operations, while a page is the minimum 

unit for read/program operations. NAND flash memory has several 

distinct characteristics (i.e., endurance and “out-of-place” update) 

[9,10] . To conceal these unfavorable characteristics, an intermediate 

software module called flash translation layer (FTL) is employed to 

emulate NAND flash as a block device [11–14] . Solid-state drives 

(SSDs) use NAND flash memory as storage media and also adopt 

similar FTLs to improve the performance [15–17] . 

Fig. 1 illustrates the system architecture for NAND flash mem- 

ory storage system. Basically, there are two types of flash mem- 

ory storage systems, file system based flash memory storage sys- 

tem, and flash translation layer (FTL) based flash memory storage 

system. File system based flash memory storage system provides a 

flash-aware interface that can directly handle the flash device. FTL- 

based system hides the properties of flash and emulates the flash 

memory as the block device. The inputs of file system based and 

FTL-based system are both virtual addresses. Therefore, it is possi- 

ble to manipulate the virtual-logical-physical address translations 

for both types of flash memory storage systems. 

A typical flash-based NAND flash storage system normally con- 

sists of two layers, FTL layer and Memory Technology Device (MTD) 

layer. MTD layer implements primitive functions over flash mem- 

ory, such as read, write, and erase operations. The main role of FTL 

is to redirect logical addresses from the file system of a host into 

physical addresses in NAND flash, and maintains a mapping table 

to keep track of the mapping information. FTL also provides useful 

components, such as garbage collector and wear-leveler, to opti- 

mize the space utilization and maintain the same level of wear for 

each block in NAND flash memory [18] . 

As FTL uses logical address to identify read/write accesses, the 

aforementioned process in journaling file system will hold two 

separate logical addresses for the journal and the home locations. 

Therefore, the duplication of the identical data will be issued to 

two different physical locations. In order to reduce unnecessary 

write accesses to flash devices for the same content, emerging stor- 

age primitives (i.e., clone, move , and delete ) have been proposed 

[2,19] . Fig. 1 (b) shows the system architecture that adopts emerg- 

ing storage primitives. In this architecture, these storage primitives 

provide virtual address spaces that are much larger than those of 

the logical or the physical address spaces in the storage system. 

The host system can directly manipulate the address map and only 

issue one single access to storage devices for identical data. 

In order to fully explore the unique aspects of the flash mem- 

ory and take advantage of emerging storage primitives, several is- 

sues have to be considered. First, current storage systems (e.g., 

ANViL [2] ) that use emerging storage primitives did not consider 

the update operations to the journal or the host location. When 

an update operation comes, they will treat the updated data as 

new logical addresses and allocate new physical address to store 

the updated data. Then the journal and the host location will be 

pointed by two separate logical addresses. Writing the updated 

data from the scratch will incur extra time and space overhead, 

as the journal and the host location may still share a large portion 

of identical data. Second, these storage systems normally maintain 

the virtual-to-logical address mappings with multiple virtual ad- 

dresses point to the same logical address. This address mapping 

table will be much larger than the address mapping table for the 

logical-to-physical address mappings handled by FTL. How to ef- 

fectively manage this virtual-to-logical address mapping table be- 

comes a critical issue to ensure that emerging storage primitives 

can be successfully applied to flash memory devices. These obser- 

vations motive us to propose new address mapping strategies to 

supplement emerging storage primitives and to provide a more ef- 

ficient flash memory. 



Download English Version:

https://daneshyari.com/en/article/4956753

Download Persian Version:

https://daneshyari.com/article/4956753

Daneshyari.com

https://daneshyari.com/en/article/4956753
https://daneshyari.com/article/4956753
https://daneshyari.com

