
ARTICLE IN PRESS 

JID: MICPRO [m5G; June 22, 2016;16:14 ] 

Microprocessors and Microsystems 0 0 0 (2016) 1–15 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

On-the-fly adaptivity for process networks over shared-memory 

platforms 

Giuseppe Tuveri a , ∗, Paolo Meloni a , ∗, Francesca Palumbo 

b , Giovanni Pietro Seu 

a , Igor Loi c , 
Francesco Conti c , Luigi Raffo 

a 

a DIEE, University of Cagliari, 09123 Cagliari, Italy 
b PolComIng, University of Sassari, 07100 Sassari, Italy 
c Micrel Lab - DEI, University of Bologna, 40136 Bologna, Italy 

a r t i c l e i n f o 

Article history: 

Received 25 November 2015 

Revised 5 May 2016 

Accepted 17 June 2016 

Available online xxx 

Keywords: 

Mapping re-configuration 

Adaptive MP-SoCs 

Shared memory platforms 

Re-configurable kahn process networks 

a b s t r a c t 

Modern MPSoC architectures incorporate tens of processing elements on a single die. This trend poses 

the need of expressing the parallelism of the applications in order to effectively exploit the available re- 

sources. Several models of computation have been proposed, that specify an application as a network of 

independent computational elements. Such models represent a suitable solution for systematic mapping 

of parallel applications onto multiprocessor architectures. However, the workload of a given application 

can abruptly vary, as well as the amount of computing resources available, depending on the overall 

workload of the system and on the input data dependency. Traditional worst-case designs may overes- 

timate workloads, leading to resource wasting and unnecessary power consumption. To overcome such 

limitation, in this work we devise a fast, run-time and automatic approach able to quickly re-configure 

the core-to-task mapping and the degree of parallelism of the application when the available resources 

or the application workload change, targeting shared-memory platforms. Experiments, carried out using 

an FPGA implementation, demonstrate the effectiveness of the proposed approach, in terms of achievable 

speed-up, power saving and introduced overhead. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

An increasing number of real-world applications can be clas- 

sified as streaming applications. Dataflow stream-oriented models 

of computation like Kahn Process Networks (KPN) or Synchronous 

Data Flow (SDF) are suitable to specify embedded streaming ap- 

plications in a parallel form, facilitating their mapping onto em- 

bedded multi-core platforms [1 , 2] . In such model the application 

tasks communicate with each other using FIFOs, thus it is often 

used to program statically mapped MPSoCs, where processing el- 

ements are connected by means of hardware FIFOs or point-to- 

point connections. However, modern MPSoC architectures incorpo- 

rate a large number of processing elements whose availability may 

drastically change over time. For instance, if an application stops, a 

system manager may reallocate the released resources to another 

application whose performance can be improved. Several works 

∗ Corresponding author. 

E-mail addresses: giuseppe.tuveri@diee.unica.it (G. Tuveri), 

paolo.meloni@diee.unica.it (P. Meloni), fpalumbo@uniss.it (F. Palumbo), 

giampiseu@gmail.com (G. Pietro Seu), igor.loi@unibo.it (I. Loi), f.conti@unibo.it 

(F. Conti), luigi@diee.unica.it (L. Raffo). 

have shown that relevant performance gains in terms of through- 

put [3] or energy consumption [4] can be obtained by optimiz- 

ing a process network specification at compile-time. Compile-time 

methodologies are typically based on worst-case scenarios analy- 

sis and prevision, so that the required throughput can always be 

satisfied. Hence, these techniques are neither power nor resource 

efficient, when workloads vary at run-time. Efficient re-mapping 

methodologies are still an open-challenge of MPSoC design, in par- 

ticular for what regard run-time task reconfiguration, according to 

the application need and the processing elements workload, and 

how the application network should be re-optimized, to dynami- 

cally allocate the proper number of cores. 

In this paper we present an approach to promptly adjust the 

application’s task mapping to cores, and to fine-tune the degree 

of parallelism (i.e. the capability of the overall system to execute 

different operations simultaneously; in a multi-core environment 

the degree of parallelism represents, for each time period, the 

number of processors working at the same time) of the application 

network at run-time, by means of on-the-fly task migration and 

duplication mechanisms. The approach is primarily conceived as a 

low-overhead technique that exploits many-core shared-memory 

platforms to improve efficiency of flexible communication patterns 

http://dx.doi.org/10.1016/j.micpro.2016.06.010 

0141-9331/© 2016 Published by Elsevier B.V. 

Please cite this article as: G. Tuveri et al., On-the-fly adaptivity for process networks over shared-memory platforms, Microprocessors 

and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.06.010 

http://dx.doi.org/10.1016/j.micpro.2016.06.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:giuseppe.tuveri@diee.unica.it
mailto:paolo.meloni@diee.unica.it
mailto:fpalumbo@uniss.it
mailto:giampiseu@gmail.com
mailto:igor.loi@unibo.it
mailto:f.conti@unibo.it
mailto:luigi@diee.unica.it
http://dx.doi.org/10.1016/j.micpro.2016.06.010
http://dx.doi.org/10.1016/j.micpro.2016.06.010


2 G. Tuveri et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–15 

ARTICLE IN PRESS 

JID: MICPRO [m5G; June 22, 2016;16:14 ] 

between cores and tasks. In particular, starting from a previous 

state-of-the-art work [5] , in this paper: 

• We propose a novel technique that allows to migrate KPN pro- 

cesses on-the-fly , while avoiding any synchronizing handshake 

between processes. 

• We propose a novel channel-based technique that enables di- 

rect, and arbitrary, out-of-order access to the channel buffers, 

by multiple concurrent readers/writers while preserving the 

KPN semantics and avoiding any channel access serialization. 

• We propose a novel run-time algorithm able to exploit the 

above-mentioned migration and parallelization techniques. The 

algorithm reacts to changes in the process workload by deter- 

mining an alternative mapping that maximizes the throughput, 

or that minimizes the power consumption with respect to a 

given throughput constraint. 

The rest of this paper is organized as follows. In Section 2 we 

provide an analysis of the state of the art, highlighting the critical- 

ities of the current static and dynamic approaches. Section 3 pro- 

vides the definition of this paper objective by means of a prac- 

tical example, along with the overview of the proposed solu- 

tion to dynamic, resource and power efficient, task re-mapping; 

while, Section 4 details all the implemented strategies. Finally, 

Section 5 discusses the benefits of the proposed approach, prior 

to conclude in Section 6 with some final remarks. Please note that 

different case studies are presented in Section 5 to assess and char- 

acterize our dynamic re-mapping methodology in terms of over- 

head with respect to a static methodology, scalability and power 

consumption. 

2. Related work 

Having an input application specified as a process network al- 

lows a more natural mapping of the application processes to the 

processing elements in the MPSoC architecture, with respect to a 

sequential program specification [1] . [6] and [7] shown that a KPN 

can be automatically derived from static affine nested-loop pro- 

grams. Such a partitioning strategy may not necessarily result in a 

KPN that meets the resource or performance requirements. In [8] , 

De Kock has shown that by modifying the network structure of a 

KPN, the throughput of an application can be improved. In order to 

meet these requirements, a designer can apply transformations to 

increase parallelism by splitting processes as defined in [9] . In [10] , 

“just-enough parallelism” is exploited by replicating processes of 

synchronous dataflow (SDF) graphs [2] . Both approaches described 

in [9] , [10] are performed at compile-time, by means of source-to- 

source compilation techniques and off-line network restructuring 

based on the analysis of data dependencies of the network. Work- 

ing at the same level of abstraction, source-to-source transforma- 

tion is meant to map one formalism/language to another; i.e. in 

[9] a four-step transformation methodology is presented to trans- 

form a KPN network in a functionally equivalent one, but with a 

changed and optimized network structure. Its Off-line restructur- 

ing is obviously less flexible with respect to a run-time adaptive 

approach. Moreover, the graph restructuring leads to a new net- 

work since, for each producer-consumer pair, the number of FIFOs 

is increased by a factor s (splitting or replication factor). Thus such 

modification is not easily applicable to the network topology at 

run-time (i.e. remapping FIFO ends or introducing new FIFO con- 

nections), since it would require proper middleware and hardware 

support to ensure data consistency. The introduction of such sup- 

port can introduce a considerable overhead and requires a proper 

design space exploration phase, in order to find the right level of 

reconfiguration granularity [11 , 12] . Works in [9 , 10] are based on 

worst-case design methodologies, able to satisfy the throughput 

requirement; however, they usually are neither resource efficient 

nor power efficient when the workloads of nodes vary at run time 

[13 , 14] . 

Some approaches operating at run-time have also been pro- 

posed: [15] presents a method able to re-map tasks onto cores 

to improve the throughput when the workloads vary. The work in 

[16] performs dynamic task duplication at operating system level 

for streaming applications to improve the throughput. The adap- 

tation time overhead of the use cases presented in works [15 , 16] 

is large due to coarse-grained managements, and the through- 

put decay lasts seconds. All of these methods are not suitable 

for streaming applications (e.g. audio, video and imaging) under 

throughput constraints with fast workload variations. Furthermore, 

the approach in [15] does not support any process splitting mech- 

anism, while the approach in [16] , even exploiting a run-time 

task duplication mechanism, performs the update of the status of 

each shared communication buffer only when all replicated actors 

(which are working on the buffer) com pleted their work. This can 

bring to a potential waste of resources. The work in [17] presents 

a run-time agile task mapping method for network-based many- 

core systems, to minimize communication latency and power dis- 

sipation, that however does not study the effects on through- 

put. Works in [18–20] present techniques to reduce the operating 

frequency/voltage of each core when workloads are smaller than 

the worst case, then guaranteeing the throughput constraint. Also, 

they allow for fast adaptation even with highly dynamic work- 

loads. Nevertheless, the task mappings of these works are static; 

therefore, to optimize core usage (and in turn total power), they 

did not study task remapping and the possibility of reusing core 

across multiple applications which are running in parallel. As al- 

ready said, in this paper we propose a dynamic approach, which 

enables run-time re-mapping capable of power consumption min- 

imization or throughput maximization. At the state of the art, as 

discussed above these two key system metrics are rarely concur- 

rently considered, and typically collide. 

The methodology presented in [21] allows to adapt stateful pro- 

cess networks at run-time. However, it is conceived to respond 

to resource variations, since it requires the process network to 

reach a normal state in order to be transformed. This, along with 

a time-consuming migration technique, leads to unsuitable adapta- 

tion times for typical audio, video and imaging applications, which 

require fine-grained adaptation. Our approach is meant to be more 

lightweight in order to deal with rapid application workload vari- 

ations. The work in [22] presents a novel methodology to main- 

tain/improve the throughput of software pipelines on a many-core 

system, along with a fast bottleneck detection mechanism. How- 

ever, it targets generic software pipelines and presents an imple- 

mentation that does not support multiple tasks per core and seri- 

alizes data token sending when multiple readers/writers access a 

buffer. 

3. Context and overview of the proposed solution 

Fig. 1 depicts the specification of a H.264 decoder, along with 

the workload distribution of the Context-adaptive variable-length 

coding (CAVLC) process across the iterations (99 process iterations 

per frame) for different input streams. You can notice that the 

workload rapidly varies at run-time, not only according to differ- 

ent streams, but even within each frame processing. This is due to 

dependency on the input data. 

Having so abrupt changes in process workloads, the number 

of cores needed to satisfy a given throughput (e.g. 24 frames/sec) 

also varies at run-time. Traditional worst-case KPN compile-time 

approaches, such as [9] and [10] , would estimate off-line network 

restructuring based data dependencies. Our approach, on the con- 

trary, allows to dynamically adjust the optimal number of needed 

cores for a given KPN application, then freeing cores for other 

Please cite this article as: G. Tuveri et al., On-the-fly adaptivity for process networks over shared-memory platforms, Microprocessors 

and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.06.010 

http://dx.doi.org/10.1016/j.micpro.2016.06.010


Download English Version:

https://daneshyari.com/en/article/4956803

Download Persian Version:

https://daneshyari.com/article/4956803

Daneshyari.com

https://daneshyari.com/en/article/4956803
https://daneshyari.com/article/4956803
https://daneshyari.com

