
Microprocessors and Microsystems 48 (2017) 21–35

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Executing secured virtual machines within a manycore architecture

Clément Dévigne

∗, Jean-Baptiste Bréjon , Quentin L. Meunier , Franck Wajsbürt

Sorbonne Universités UPMC Univ Paris 06, CNRS, LIP6 UMR 7606 4 place Jussieu 75005 Paris, France

a r t i c l e i n f o

Article history:

Received 22 February 2016

Revised 31 May 2016

Accepted 16 September 2016

Available online 22 September 2016

Keywords:

Manycore architecture

Virtualization

Hypervisor

Physical isolation

Security

a b s t r a c t

Manycore processors are a way to face the always growing demand in digital data processing. However,

by putting closer distinct and possibly private data, they open up new security breaches. Splitting the

architecture into several partitions managed by a hypervisor is a way to enforce isolation between the

running virtual machines. Thanks to their high number of cores, these architectures can mitigate the

impact of dedicating cores both to the virtual machines and the hypervisor, while allowing an efficient

execution of the virtualized operating systems. We present such an architecture allowing the execution

of fully virtualized multicore operating systems benefiting of hardware cache coherence. The physical

isolation is made by the means of address space via the introduction of a light hardware module similar

to a memory-management unit at the network-on-chip entrance, but without the drawback of relying

on a page table. We designed a cycle-accurate virtual prototype of the architecture, controlled by a light

blind hypervisor with minimum rights, only able to start and stop virtual machines. Experiments made

on our virtual prototype shows that our solution has a low time overhead – typically 3% on average.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The computer world is facing an explosion in the amount of

digital data. This data can come from social networks as well as

new uses of mobile computing as communicating objects. The

information contained in these data is valuable either for com-

mercial purpose, or for economic, environmental or health-related

purposes as well. Clearly, the issue of security for accessing such

information is critical, as is the protection of personal data.

By their nature, manycore processors are able to run multiple

applications in parallel and thus allow to process a large data

stream. However, they must be able to guarantee the security

properties for such applications, namely integrity and confidential-

ity, in particular if the data processed are from different clients.

We propose a mixed hardware/software solution which can

be used as a cloud platform, allowing to execute numerous in-

dependent applications, while providing an isolated execution

environment as a response to the confidentiality and integrity

problematics. The choice of a manycore architecture seems partic-

ularly suited to this goal, since the high number of cores allows to

respond to all kinds of computational demands. However, existing

manycore architectures do not provide security extensions, so they

cannot propose an efficient solution. The baseline manycore archi-

∗ Corresponding author.

E-mail addresses: clement.devigne@lip6.fr (C. Dévigne), jean-baptiste.brejon@

lip6.fr (J.-B. Bréjon), quentin.meunier@lip6.fr (Q.L. Meunier), franck.wajsburt@lip6.fr

(F. Wajsbürt).

tecture used in this work is the TSAR [1] architecture, which is a

manycore architecture with hardware cache coherence and virtual

memory support, but no particular mechanism for addressing

security issues. The security-enhanced version of this architecture

will be called the Tsunamy architecture.

The proposed architecture can typically be used by cloud

platform servers, to which several clients can connect and execute

their program for processing data. In such a context, two clients’

applications need to be isolated with more than just processes,

because a bug exploit in the operating system could lead to data

leakage and corruption between the two applications. In our

proposed solution, we make thus the assumption that each client

runs an entire operating system, using the well-known technique

of operating system virtualization.

An ideal framework for cloud platforms would meet the fol-

lowing goals and constraints: little or no hardware extension, no

performance penalty compared to an operating system running

alone on the platform, support for general purpose (e.g. Unix-like)

multicore operating systems, hardware cache coherence support,

unmodified (bare-metal) execution of guest operating systems and

of course security concerns: virtual machine isolation and small

Trusted Computing Base (TCB). We will discuss how our solution

answers these constraints along the article.

We believe that this paper makes three contributions:

• We provide the design of a secure manycore architecture

allowing the execution of physically isolated virtual machines

of variable size, and supporting cache coherency.

http://dx.doi.org/10.1016/j.micpro.2016.09.008

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.09.008&domain=pdf
mailto:clement.devigne@lip6.fr
mailto:jean-baptiste.brejon@lip6.fr
mailto:quentin.meunier@lip6.fr
mailto:franck.wajsburt@lip6.fr
http://dx.doi.org/10.1016/j.micpro.2016.09.008

22 C. Dévigne et al. / Microprocessors and Microsystems 48 (2017) 21–35

• We discuss the design of a blind hypervisor adapted to this

architecture, and requiring little hardware extensions
• We demonstrate the feasibility of our approach by the imple-

mentation and evaluation of a cycle-accurate virtual prototype,

and we show that the virtualization overhead remains low.

The rest of the document is organized as follows:

Section 2 gives more details about the background of hyper-

visors and manycore architectures, and discusses related works;

Section 3 presents our design choices based on the security

properties we target; Section 4 contains a description of the

existing components upon which this work is based, and the

proposed modifications; Section 5 presents our hypervisor and

its basic functionalities, comprising the virtual machine boot and

shutdown; Section 6 presents our experimental procedures and

the obtained simulations results; finally, Section 7 concludes and

summarizes the remaining work.

2. Background and related works

2.1. Manycore architectures

Manycore architectures are architectures containing from a

few tens to thousands of cores integrated on the same chip.

Such architectures use simple cores in order to maximize the

performance per Watt ratio [2] . They are typically clustered, the

clusters being connected together via a Network-on-Chip [3,4] .

Each cluster (Fig. 1) usually contains one or several cores and a

few peripherals, connected over a fast local interconnect. Apart

from the performance per Watt, the biggest advantage of many-

core architecture is their inherent redundancy, which allows both

power dissipation reduction by dynamically turning off idle cores,

and fault-tolerance through deactivation of faulty cores while

using the remaining functional ones.

Manycore architectures vary in the way the cores can communi-

cate, either inside a cluster or between two different clusters. Some

architectures use specialized interfaces (e.g [5]) or dedicated hard-

ware buffers to make two cores communicate, while some others

support shared memory. Among the shared memory architectures,

some support hardware coherence [6,7] while others do not [8] .

We believe that a manycore architecture should provide shared

memory with hardware cache coherence in order to support

general purpose operating systems. In a cloud platform context, it

is true that we need not allocate all of the resources to a single

user, but providing a minimum number of cores is essential to

have a sufficient computational power since cores are simple.

Besides, running a general-purpose multicore operating system

almost requires to have hardware coherence.

The TSAR architecture [1] described in Section 4 and used

as a baseline for this work thus provides shared memory with

hardware cache coherence.

2.2. Logical partitions and dedicated hardware

A logical partition is an independent operating environment,

consisting of a subset of the architecture processors, memory

and I/O devices, and running a guest operating system. The guest

operating system is a virtualized operating system, running above

some kind of hypervisor. As such, a logical partition is one type

of virtual machine [9] . Logical partitioning is used in some virtu-

alized environments requiring high insurance, such as separation

kernels [10,11] . Commercial services using architecture partition-

ing for virtual machines include the Infrastructure as a Service

(IaaS) provided by IBM [12,13] , or Hitashi embedded virtualization

technology [14] .

Logical partitions can either have dedicated processors or share

them. Dedicating hardware to specific guest operating systems has

Fig. 1. Manycore architecture.

the drawback of rigidity and non optimal use of the resources.

However, it comes with a big advantage: by dedicating these

resources to the guest operating system, the hypervisor does not

necessarily need to interact with the latter, therefore minimizing

risks of being compromised. This technique is known as hypervi-

sor disengagement [15] . Besides, this reduced interaction in turn

results in a low performance overhead for the virtual machine

compared to a non virtualized execution of the operating system.

2.3. Hypervisors and security concerns

Operating system virtualization [16] is a technique which

allows to execute an unmodified operating system on a part of

an architecture. A hypervisor is generally used to manage the

different virtualized operating systems [17,18] . It is a software

agent located between the hardware and the virtualized operating

systems, and its role is to allocate hardware resources to guest

operating systems. As such, it is a security critical point, since

every breach in the hypervisor can lead to:

• unauthorized reads of data of a virtual machine (confidentiality

violation);
• unauthorized modification of pieces of data of a virtual

machine (integrity violation);
• information leakage – data left in memory or hardware com-

ponents which can be exploited by another malicious virtual

machine.

Thus, the hypervisor must be part of the Trusted Computing

Base (TCB), i.e. the trusted elements in the system. This is why the

hypervisor should remain as small as possible, so as to minimize

the risks of it being compromised [9] defines two properties for

measuring the hypervisor sensitivity to attacks: small footprint

and reduced interaction . The footprint is traditionally measured in

lines of code (LoC), fewer lines meaning fewer bugs in average,

and thus fewer possibilities for an attacker to exploit a flaw.

Using hardware virtualization extensions, hypervisor can be as

small as 4K LoC [19] , whereas hypervisor implementing all the

virtualization mechanism can reach 100K LoC [20] .

Interactions between the hypervisor and a guest operating

system happen at launch and shutdown, and every time a virtual

machine requires a service from the hypervisor, for example

during an I/O access. Hypervisor disengagement allows to limit

interactions at their minimum, i.e. launch and shutdown, thus

reducing the possibilities for an attacker to exploit a bug in a

hypervisor function.

Hypervisors can be classified into several categories. In tradi-

tional T1 hypervisors (Fig. 2), a single hypervisor instance manages

all the resources, allocates them, and interacts frequently with the

guest operating system. For example, every I/O interrupt triggers

a context switch to the hypervisor. Other interactions may be

required, in particular for memory management if there is no

specific hardware extensions, which include an additional privilege

mode to the CPU to the user and kernel modes, combined with

a MMU extension to translate machine addresses to another

Download English Version:

https://daneshyari.com/en/article/4956811

Download Persian Version:

https://daneshyari.com/article/4956811

Daneshyari.com

https://daneshyari.com/en/article/4956811
https://daneshyari.com/article/4956811
https://daneshyari.com

