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a b s t r a c t 

Manycore processors are a way to face the always growing demand in digital data processing. However, 

by putting closer distinct and possibly private data, they open up new security breaches. Splitting the 

architecture into several partitions managed by a hypervisor is a way to enforce isolation between the 

running virtual machines. Thanks to their high number of cores, these architectures can mitigate the 

impact of dedicating cores both to the virtual machines and the hypervisor, while allowing an efficient 

execution of the virtualized operating systems. We present such an architecture allowing the execution 

of fully virtualized multicore operating systems benefiting of hardware cache coherence. The physical 

isolation is made by the means of address space via the introduction of a light hardware module similar 

to a memory-management unit at the network-on-chip entrance, but without the drawback of relying 

on a page table. We designed a cycle-accurate virtual prototype of the architecture, controlled by a light 

blind hypervisor with minimum rights, only able to start and stop virtual machines. Experiments made 

on our virtual prototype shows that our solution has a low time overhead – typically 3% on average. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The computer world is facing an explosion in the amount of 

digital data. This data can come from social networks as well as 

new uses of mobile computing as communicating objects. The 

information contained in these data is valuable either for com- 

mercial purpose, or for economic, environmental or health-related 

purposes as well. Clearly, the issue of security for accessing such 

information is critical, as is the protection of personal data. 

By their nature, manycore processors are able to run multiple 

applications in parallel and thus allow to process a large data 

stream. However, they must be able to guarantee the security 

properties for such applications, namely integrity and confidential- 

ity, in particular if the data processed are from different clients. 

We propose a mixed hardware/software solution which can 

be used as a cloud platform, allowing to execute numerous in- 

dependent applications, while providing an isolated execution 

environment as a response to the confidentiality and integrity 

problematics. The choice of a manycore architecture seems partic- 

ularly suited to this goal, since the high number of cores allows to 

respond to all kinds of computational demands. However, existing 

manycore architectures do not provide security extensions, so they 

cannot propose an efficient solution. The baseline manycore archi- 
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tecture used in this work is the TSAR [1] architecture, which is a 

manycore architecture with hardware cache coherence and virtual 

memory support, but no particular mechanism for addressing 

security issues. The security-enhanced version of this architecture 

will be called the Tsunamy architecture. 

The proposed architecture can typically be used by cloud 

platform servers, to which several clients can connect and execute 

their program for processing data. In such a context, two clients’ 

applications need to be isolated with more than just processes, 

because a bug exploit in the operating system could lead to data 

leakage and corruption between the two applications. In our 

proposed solution, we make thus the assumption that each client 

runs an entire operating system, using the well-known technique 

of operating system virtualization. 

An ideal framework for cloud platforms would meet the fol- 

lowing goals and constraints: little or no hardware extension, no 

performance penalty compared to an operating system running 

alone on the platform, support for general purpose (e.g. Unix-like) 

multicore operating systems, hardware cache coherence support, 

unmodified (bare-metal) execution of guest operating systems and 

of course security concerns: virtual machine isolation and small 

Trusted Computing Base (TCB). We will discuss how our solution 

answers these constraints along the article. 

We believe that this paper makes three contributions: 

• We provide the design of a secure manycore architecture 

allowing the execution of physically isolated virtual machines 

of variable size, and supporting cache coherency. 
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• We discuss the design of a blind hypervisor adapted to this 

architecture, and requiring little hardware extensions 
• We demonstrate the feasibility of our approach by the imple- 

mentation and evaluation of a cycle-accurate virtual prototype, 

and we show that the virtualization overhead remains low. 

The rest of the document is organized as follows: 

Section 2 gives more details about the background of hyper- 

visors and manycore architectures, and discusses related works; 

Section 3 presents our design choices based on the security 

properties we target; Section 4 contains a description of the 

existing components upon which this work is based, and the 

proposed modifications; Section 5 presents our hypervisor and 

its basic functionalities, comprising the virtual machine boot and 

shutdown; Section 6 presents our experimental procedures and 

the obtained simulations results; finally, Section 7 concludes and 

summarizes the remaining work. 

2. Background and related works 

2.1. Manycore architectures 

Manycore architectures are architectures containing from a 

few tens to thousands of cores integrated on the same chip. 

Such architectures use simple cores in order to maximize the 

performance per Watt ratio [2] . They are typically clustered, the 

clusters being connected together via a Network-on-Chip [3,4] . 

Each cluster ( Fig. 1 ) usually contains one or several cores and a 

few peripherals, connected over a fast local interconnect. Apart 

from the performance per Watt, the biggest advantage of many- 

core architecture is their inherent redundancy, which allows both 

power dissipation reduction by dynamically turning off idle cores, 

and fault-tolerance through deactivation of faulty cores while 

using the remaining functional ones. 

Manycore architectures vary in the way the cores can communi- 

cate, either inside a cluster or between two different clusters. Some 

architectures use specialized interfaces (e.g [5] ) or dedicated hard- 

ware buffers to make two cores communicate, while some others 

support shared memory. Among the shared memory architectures, 

some support hardware coherence [6,7] while others do not [8] . 

We believe that a manycore architecture should provide shared 

memory with hardware cache coherence in order to support 

general purpose operating systems. In a cloud platform context, it 

is true that we need not allocate all of the resources to a single 

user, but providing a minimum number of cores is essential to 

have a sufficient computational power since cores are simple. 

Besides, running a general-purpose multicore operating system 

almost requires to have hardware coherence. 

The TSAR architecture [1] described in Section 4 and used 

as a baseline for this work thus provides shared memory with 

hardware cache coherence. 

2.2. Logical partitions and dedicated hardware 

A logical partition is an independent operating environment, 

consisting of a subset of the architecture processors, memory 

and I/O devices, and running a guest operating system. The guest 

operating system is a virtualized operating system, running above 

some kind of hypervisor. As such, a logical partition is one type 

of virtual machine [9] . Logical partitioning is used in some virtu- 

alized environments requiring high insurance, such as separation 

kernels [10,11] . Commercial services using architecture partition- 

ing for virtual machines include the Infrastructure as a Service 

(IaaS) provided by IBM [12,13] , or Hitashi embedded virtualization 

technology [14] . 

Logical partitions can either have dedicated processors or share 

them. Dedicating hardware to specific guest operating systems has 

Fig. 1. Manycore architecture. 

the drawback of rigidity and non optimal use of the resources. 

However, it comes with a big advantage: by dedicating these 

resources to the guest operating system, the hypervisor does not 

necessarily need to interact with the latter, therefore minimizing 

risks of being compromised. This technique is known as hypervi- 

sor disengagement [15] . Besides, this reduced interaction in turn 

results in a low performance overhead for the virtual machine 

compared to a non virtualized execution of the operating system. 

2.3. Hypervisors and security concerns 

Operating system virtualization [16] is a technique which 

allows to execute an unmodified operating system on a part of 

an architecture. A hypervisor is generally used to manage the 

different virtualized operating systems [17,18] . It is a software 

agent located between the hardware and the virtualized operating 

systems, and its role is to allocate hardware resources to guest 

operating systems. As such, it is a security critical point, since 

every breach in the hypervisor can lead to: 

• unauthorized reads of data of a virtual machine (confidentiality 

violation); 
• unauthorized modification of pieces of data of a virtual 

machine (integrity violation); 
• information leakage – data left in memory or hardware com- 

ponents which can be exploited by another malicious virtual 

machine. 

Thus, the hypervisor must be part of the Trusted Computing 

Base (TCB), i.e. the trusted elements in the system. This is why the 

hypervisor should remain as small as possible, so as to minimize 

the risks of it being compromised [9] defines two properties for 

measuring the hypervisor sensitivity to attacks: small footprint 

and reduced interaction . The footprint is traditionally measured in 

lines of code (LoC), fewer lines meaning fewer bugs in average, 

and thus fewer possibilities for an attacker to exploit a flaw. 

Using hardware virtualization extensions, hypervisor can be as 

small as 4K LoC [19] , whereas hypervisor implementing all the 

virtualization mechanism can reach 100K LoC [20] . 

Interactions between the hypervisor and a guest operating 

system happen at launch and shutdown, and every time a virtual 

machine requires a service from the hypervisor, for example 

during an I/O access. Hypervisor disengagement allows to limit 

interactions at their minimum, i.e. launch and shutdown, thus 

reducing the possibilities for an attacker to exploit a bug in a 

hypervisor function. 

Hypervisors can be classified into several categories. In tradi- 

tional T1 hypervisors ( Fig. 2 ), a single hypervisor instance manages 

all the resources, allocates them, and interacts frequently with the 

guest operating system. For example, every I/O interrupt triggers 

a context switch to the hypervisor. Other interactions may be 

required, in particular for memory management if there is no 

specific hardware extensions, which include an additional privilege 

mode to the CPU to the user and kernel modes, combined with 

a MMU extension to translate machine addresses to another 
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