
ARTICLE IN PRESS 

JID: MICPRO [m5G; May 31, 2016;20:16 ] 

Microprocessors and Microsystems 0 0 0 (2016) 1–17 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Co-Processor for evolutionary full decision tree induction 

Bogdan Z. Vukobratovi ́c 

∗, Rastislav J.R. Struharik 

Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovi ́ca 6, Novi Sad, 210 0 0, Serbia 

a r t i c l e i n f o 

Article history: 

Received 8 June 2015 

Revised 4 March 2016 

Accepted 23 May 2016 

Available online xxx 

Keywords: 

Data mining 

Machine learning 

Hardware-software co-design 

Decision trees 

Evolutionary algorithms 

Hardware acceleration 

FPGA 

Co-processor 

a b s t r a c t 

In this paper a co-processor for the hardware aided decision tree induction using evolutionary approach 

(EFTIP) is proposed. EFTIP is used for hardware acceleration of the fitness evaluation task since this task 

is proven in the paper to be the execution time bottleneck. The EFTIP co-processor can significantly im- 

prove the execution time of a novel algorithm for the full decision tree induction using evolutionary 

approach (EFTI) when used to accelerate the fitness evaluation task. The comparison of the HW/SW EFTI 

implementation with the pure software implementation suggests that the proposed HW/SW architecture 

offers substantial DT induction time speedups for the selected benchmark datasets from the standard UCI 

machine learning repository database. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

As a branch of artificial intelligence, machine learning 

[1,2] comprises a set of procedures/algorithms for the construc- 

tion of the systems that adapt their behavior to the input data, i.e. 

by “learning” from the data. An important feature of the machine 

learning systems is that they can be built with little knowledge 

of input data and can perform well on previously unseen data in- 

stances (generalization property). 

In the open literature, a range of machine learning systems have 

been introduced, including decision trees (DTs) [3,4] , support vec- 

tor machines (SVMs) [5] and artificial neural networks (ANNs) [6] . 

Data mining is a field where machine learning systems have been 

widely used [7] , among which DTs, ANNs and SVMs are the most 

popular [3,8,9] . 

The machine learning systems can be constructed using super- 

vised learning, unsupervised learning or any combination of the 

two techniques [1,2] . Supervised learning implies using the desired 

responses to various input data to construct the system, while un- 

supervised learning implies constructing the system based on the 

input data only. When the supervised learning is used, the lifetime 

of a machine learning system usually comprises two phases: the 

training (induction or learning) and the deployment. During the 

training phase, a training set is used to build the system. The train- 

∗ Corresponding author. 

E-mail addresses: bogdan.vukobratovic@gmail.com (B.Z. Vukobratovi ́c), 

rasti@uns.ac.rs (R.J.R. Struharik). 

ing set comprises input data and the desired system responses to 

that data. Once constructed, the system is ready to be used, where 

new, previously unseen data, will arrive and the system must pro- 

vide the responses using the knowledge extracted from the train- 

ing set. 

The machine learning systems can perform various tasks, such 

as classification, regression, clustering, etc. The classification im- 

plies categorizing objects given the list of their attributes. Widely 

used to represent classification models is a DT classifier, which 

can be depicted in a flowchart-like tree structure. Due to their 

comprehensible nature, that resembles the human reasoning, DTs 

have been widely used to represent classification models. Amongst 

other machine learning algorithms DTs have several advantages, 

such as the robustness to noise, the ability to deal with redun- 

dant or missing attributes, the ability to handle both numerical 

and categorical data and the facility of understanding the compu- 

tation process. 

This paper focuses on oblique binary classification DTs. The 

leaves of the DT represent the classes of the problem. The non- 

leaves contain the tests which are performed on the problem in- 

stances in order to determine their path through the DT until they 

reach DT leaves. Each instance of the problem is defined by its at- 

tribute vector - A . The tests performed by oblique DT in each node 

have the following form: 

a · A = 

N A ∑ 

i =1 

a i · A i < thr, (1) 

http://dx.doi.org/10.1016/j.micpro.2016.05.013 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: B.Z. Vukobratovi ́c, R.J.R. Struharik, Co-Processor for evolutionary full decision tree induction, Microprocessors 

and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.05.013 

http://dx.doi.org/10.1016/j.micpro.2016.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:bogdan.vukobratovic@gmail.com
mailto:rasti@uns.ac.rs
http://dx.doi.org/10.1016/j.micpro.2016.05.013
http://dx.doi.org/10.1016/j.micpro.2016.05.013


2 B.Z. Vukobratovi ́c, R.J.R. Struharik / Microprocessors and Microsystems 0 0 0 (2016) 1–17 

ARTICLE IN PRESS 

JID: MICPRO [m5G; May 31, 2016;20:16 ] 

Fig. 1. An example of the oblique binary DT with one possible traversal path shown 

in red. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

where a represents the coefficient vector, N A equals the size of the 

attribute and the coefficient vectors and thr models the afine part 

of the test. The Fig. 1 shows an example of the oblique binary DT. 

Each instance starts from the DT root node and traverses the 

DT in order to be assigned a class. If the test condition given by 

the Eq. (1) is true , the DT traversal is continued via the left child, 

otherwise it is continued via the right child. Depending on the leaf 

in which the instance finishes after DT traversal, it is classified into 

the class assigned to that leaf. One possible traversal path is shown 

in the Fig. 1 in red. After the traversal, the instance will be classi- 

fied into the class C 4 . 

There are two general approaches to DT induction: incremental 

(node-by-node) and full tree induction. Furthermore, the process of 

finding the optimal oblique DT is a hard algorithmic problem [10] , 

therefore most of the oblique DT induction algorithms use some 

kind of heuristic for the optimization process, which is often some 

sort of evolutionary algorithm (EA). The Fig. 2 shows the taxon- 

omy of EAs for the DT induction as presented in [11] . Computa- 

tionally least demanding approach for the DT induction is a greedy 

top-down recursive partitioning strategy for the tree growth, hence 

most of the DT induction algorithms use this approach. Naturally, 

this approach suffers from the inability of escaping the local op- 

tima. Better results, especially if the DT size is considered, could 

be obtained by the inducers that work on full DT, with cost of the 

higher computational complexity [12] . 

The DT induction phase can be very computationally demand- 

ing and can last for hours or even days for practical problems. This 

is certainly true for the full DT inference algorithms. By accelerat- 

ing this task, the machine learning systems could be trained faster, 

allowing for shorter design cycles, or could process large amounts 

of data, which is of particular interest if the DTs are used in the 

data mining applications [7] . This might also allow the DT learning 

systems to be rebuilt in real-time, for the applications that require 

such rapid adapting, such as: machine vision [13,14] , bioinformat- 

ics [15,16] , web mining [17,18] , text mining [19,20] , etc. 

In order to accelerate the DT induction phase, two general ap- 

proaches can be used. First approach focuses on developing new 

algorithmic frameworks or new software tools, and is the dom- 

inant way of meeting this requirement [21,22] . Second approach 

focuses on the hardware acceleration of machine learning algo- 

rithms, by developing new hardware architectures optimized for 

accelerating the selected machine learning systems. 

Proposed co-processor is used for the acceleration of a new DT 

induction algorithm, called EFTI. EFTI (Evolutionary Full Tree Induc- 

tion) is an algorithm for full oblique classification DT induction us- 

ing EA. In the remaining of the paper, the proposed co-processor 

will be called EFTIP (Evolutionary Full Tree Induction co-Processor). 

The hardware acceleration of the machine learning algorithms 

receives a significant attention in the scientific community. A wide 

range of solutions have been suggested in the open literature for 

various predictive models. The authors are aware of the work that 

has been done on accelerating SVMs and ANNs, where hardware 

architectures for the acceleration of both learning and deployment 

phases have been proposed. The architectures for the hardware ac- 

celeration of SVM learning algorithms have been proposed in [23] , 

while the architectures for the acceleration of previously created 

SVMs have been proposed in [24–27] . The research in the hard- 

ware acceleration of ANNs has been particularly intensive. Numer- 

ous hardware architectures for the acceleration of already learned 

ANNs have been proposed [28–30] . Also, a large number of hard- 

ware architectures capable of implementing ANN learning algo- 

rithms in hardware have been proposed [31–33] . However, in the 

field of hardware acceleration of the DTs, the majority of the pa- 

pers focus on the acceleration of already created DTs [34–36] . 

Hardware acceleration of DT induction phase is scarcely covered. 

The authors are currently aware of only two papers on the topic 

of hardware acceleration of the DT induction algorithms [37,38] . 

However, both of these results focus on accelerating greedy top- 

down DT induction approaches. In [37] the incremental DT induc- 

tion algorithm, where EA is used to calculate the optimal coeffi- 

cient vector one node at a time, is completely accelerated in hard- 

ware. In [38] a HW/SW approach was used to accelerate the com- 

putationally most demanding part of the well known CART incre- 

mental DT induction algorithm. 

This paper is concerned with the hardware acceleration of a 

novel full DT evolutionary induction algorithm, called EFTI. EFTI 

is an algorithm for full oblique classification DT induction using 

EA [efti]. As mentioned earlier, full DT induction algorithms typi- 

cally build better DTs (smaller and more accurate) when compared 

with the incremental DT induction algorithms. However, full DT in- 

duction algorithms are more computationally demanding, requiring 

much more time to build a DT. This is one of the reasons why in- 

cremental DT induction algorithms are currently dominating the 

DT field. Developing a hardware accelerator for full DT induction 

algorithm should significantly decrease the DT inference time, and 

therefore make it more attractive. As far as the authors are aware, 

this is the first paper concerned with the hardware acceleration of 

full DT induction algorithm. 

The EFTI algorithm was chosen to be accelerated by hardware, 

since it does not use the population of individuals as most of EA- 

based DT algorithms do [39–42] . As far as authors are aware, this 

is the first full DT building algorithm that operates on a single- 

individual population. This makes the EFTI algorithm particularly 

interesting to be used in embedded applications, where memory 

and processing resources are tightly constrained. The EFTI algo- 

rithm proved to provide smaller DTs with similar or better classi- 

fication accuracy than other well-known DT inference algorithms, 

both incremental and full DT [43] . Being that the EAs are itera- 

tive by nature and extensively perform simple computations on the 

data, the EFTI algorithm should benefit from the hardware accel- 

eration, as would any other DT induction algorithm based on the 

EAs. This paper proposes EFTIP co-processor to accelerate only the 

most computationally intensive part of the EFTI algorithm, leaving 

the remaining parts of the algorithm in software. In the paper, it is 

shown that the most critical part of the EFTI algorithm is the train- 

ing set classification step from the fitness evaluation phase. EFTIP 

has been designed to accelerate this step in hardware. Another ad- 

vantage of this HW/SW co-design approach is that the proposed 

EFTIP co-processor can be used with a wide variety of other EA- 

based DT induction algorithms [11,39–42] to accelerate the train- 

ing set classification step that is always present during the fitness 

evaluation phase. 

2. EFTI algorithm 

This section describes the EFTI algorithm for full DT induction 

based on EA. This algorithm requires only one individual for DT 

Please cite this article as: B.Z. Vukobratovi ́c, R.J.R. Struharik, Co-Processor for evolutionary full decision tree induction, Microprocessors 

and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.05.013 

http://dx.doi.org/10.1016/j.micpro.2016.05.013


Download English Version:

https://daneshyari.com/en/article/4956892

Download Persian Version:

https://daneshyari.com/article/4956892

Daneshyari.com

https://daneshyari.com/en/article/4956892
https://daneshyari.com/article/4956892
https://daneshyari.com

